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Chapter 1

Introduction

1.1 Introduction

A multi-scale stochastic system models a set of particles or objects of interest that
evolve at different scales, are subject to randomness, and interact with each other.
Of particular interest are two-scale stochastic differential equations, where a slow
variable evolves in a rapidly changing random environment. For example, consider
the equation:

m

dxi = g(zg, €, yp)dt + Z Fr(@f, e, y$)dWF,

k=1
where W} are independent Brownian motions, z-variable takes value in a space X,
and the y-variable takes values in a space ). The parameter ¢ serves as an indicator
for the separation of the time scales. In this setting, the slow variable is z{ evolving
in its natural scale; while y; evolves on a faster time scale, specifically 1. It is often
the case y; = Ui/ while both i and z§ are two stochastic processes evolving on the
same time scale. Slow/ fast stochastic dynamics, with two scales, holds significant
potential for applications.

Multi-scale systems are often observed in classical mechanics, particularly in the
case of small perturbations to Hamiltonian systems, or more generally, in perturba-
tions to dynamical systems with conservation laws. A key goal is to study the effect of
these perturbations on the evolution of the Hamiltonian or energy along the system’s
trajectories. Multi-scale behaviour often emerges in the form of an e-expansion of the
perturbation.

Multi-scale dynamics are also observed in neuron response dynamics. The effect of
a spike on a neuron’s membrane potential can be quantified by the difference between
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the interior of the cell and its surroundings. Depending on the sign of this change, the
effect can be excitatory or inhibitory. After the spike arrives, the neuron’s potential
returns to its resting state.

In a generic two-dimensional neuron evolution model [5], the equations are as
follows:
u(t) = f(uvw) + I? w(t) = Gb(u, w)a

where [ is the current that does not directly affect the spike w, but a change in poten-
tial leads to a small movement in the spike. A spike induces a significant movement
in neuron potential. The firing of a spike can seem random, and the second equation
can be replaced with a diffusion model. This model can be further simplified to a
single equation as the separation scale parameter ¢ tends to zero.

In nature, multi-time scale phenomena are widespread. Klaus Hasselmann, a
German oceanographer and climate modeller, was awarded the Nobel Prize in Physics
for his groundbreaking work on climate science. He proposed a dynamical system
that describes the interaction between climate and weather, where climate evolves at
a slower pace compared to the rapidly changing weather. Quoting from the Nobel
Prize webpage:

“Our world is full of complex systems characterised by randomness and disorder.
One complex system of vital importance to humankind is Earth’s climate. In the
1970s, Klaus Hasselmann created a model that links together weather and climate,
thus answering the question of why climate models can be reliable despite weather
being changeable and chaotic.”

Randomness, whether perceived or intrinsic, must be accounted for. Multiple
time-scale stochastic ordinary differential equations and stochastic partial differen-
tial equations have also emerged as promising tools in biological and social sciences
[12]. For example, in biomedical research, a patient’s observables can be viewed as
a stochastic system interacting with drug treatments that operate at the cellular and
molecular levels.

The model of physical Brownian motion developed by Smoluchowski, Langevin,
Ornstein, and Uhlenbeck can be transformed into a two-scale system. Consider the
position of a particle of small mass ¢, where the velocity field is governed by the
Ornstein-Uhlenbeck process:

Ty =Y

1 1
dy; = ——y; + —dW;.
€ €

In a more complex scenario y; receives a feedback from the z-variable. For example,
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introducing friction into the model yields the equation [13]:

dy; = f(xy) —yp + dWs.

1.1.1 Some slow / fast models
We point out some slow /fast stochastis differential equations.

1. Stochastic Averaging of SDEs and SPDEs. Consider a stochastic averaging prob-
lem of SDEs:

daf = glaf,ys)dt + Y fulwf, )W),
k=1

where {WW/}} are independent Brownian motions.

Assume for simplicity m = 1, and z{ and y; are real valued stochastic processes
for which the following equation

day = f(ag, ye)dWe,  xp = o

are satisfied. Then the quadratic variation of the solution satisfies:

t
@ = | Plasaeis

This naiive computation indeed pointing a way for obtaining the effective dynam-
ics, by martingale problem.

2. The averaging principle is a law of large numbers, from here we may study fluc-
tuations, e.g.

SCE — i‘t
Ve
Consider for example

€

1 €
Ly = %g(l’tvyz)‘

3. Stochastic Averaging for Non-Markovian system.

Take for example SDEs driven by fractional Brownian motions B}’:

m
dxi = g(z7,y%)dt + Z f(5,y)dB/.
‘ k=1 ‘
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1.2 An example of an averaging principle - Week 1

In highly oscillatory dynamical systems, averaging techniques can be used to simplify
the analysis. The resulting averaged system approximates the original dynamics when
there is a large separation of time scales.

Let )V denote a metric space with distance function d, and let g : R? x ) - R? be a
Borel measurable function. Consider a system with a constant of motion and a small
perturbation:

ug = eg(ug, yr),

where ¢ is a small parameter indicating the magnitude of the perturbation.

By rescaling time as ¢ — t/e, we obtain the following rescaled problem:

ay = g(xg, ye).

In this setting, ¢ controls the separation of time scales. As ¢ — 0, the term y: evolves
on a much faster time scale compared to zj.

We typically assume that y; is ergodic. This means that the time-average of the
vector field g(x,y:), as y; evolves with time, converges in probability to a deterministic
vector field § on R?, for every = in R%. Tis ergodicity ensures that, over long time
intervals, on the time scale [0, %] the fast y;,-dynamics average out, leaving a persistent
influence on the slower z;-dynamics.

The following defines the weak ergodic condition.

Definition 1.2.1 We say that the pair, ¢ and (y{), satisfies the weak ergodic con-
dition, if for any z, there exists a point g(z) € R? such that for any § > 0 and any

0<s<t,
t

1
lim P(w - yJ o(z, ye (@))dr — §(z)] > 5) = 0. (1.1)
e—0 t—s s €
This condition essentially indicates that, over time, the process y; loses memory of
its initial state, and the dynamics governed by g(z,y;) become predictable in the long
run, with fluctuations around g(x) vanishing as 7' — 0.

In fact, in place of (I.2), we may assume i.e. for any § > 0 and any 7 > 0, and
uniformly in ¢t > 0,

T—o0

1 t+T
lim P(w : |Tf g(z,y5(w))ds — g(x)| > 0) = 0. (1.2)
t
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We further assume that g is Lipschitz continuous. Specifically, there exists a con-
stant |g|;, such that for all z,2’ € R%, and y,y' € ),

l9(x,y) — g(2" = )] < lgluip(lz — 2| + d(y,y)). (1.3)

Lemma 1.2.2 Suppose that g is bounded and Lipschitz continuous, and g(y5) satisfies
(1.2). Consider:

Sa=g@),  F=3(0)
then <
i‘[é%'ﬁ)( (0, 2) — glan))dr| - 0
in probability.

Proof Observing that g is bounded, Lipschitz continuous, and |z; — Z,| < |g|Lip|t — 5|
Write y¢ = yr. Let 0 < s < ..., s, denotes a uniform partition of [0, ¢].

| ot@ i) - gt =3 j 9(@r,95)) — g(an))dr

0

-y rm dr[(g(Zr, y5)) — 9(Zs;, ) + (9(Zs;, ) — §(Zs,)) + (3(Zs;) — G())].

i Vs

Note that
) j

which converges to zero as n is taken to infinity. A similar computation applies to the
third term. Now fixing n, as € — 0,

51+1

S |-

9(Zr,yr)) — 9(Zs,,yr)) dr|<2j K|z, — Zs|dr < ZASZ <
7

Z f%iﬂ(g(xswy;)) - g(fsi))dr —0

in probability. Consequently,

51+1 51+1

\Z[ 9(F,05) — 9(Eers01) dr\<+2f 9T ) — 9())dr — 0,

as we take € — 0 then take n — co. ]

To work with the convergence of solutions, iterative method or maximal principle
lead to a large collection of very useful inequality. They go by the name of Gronwall
inequality, referring to Gronwall’s work published in 1919 [6].
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Lemma 1.2.3 (Gronwall Inequality) Let v and § be non-negative, continuous func-
tions on [a, b], for which the inequality

u(t) < C + Jt B(s)u(s)ds, a<t<b
0

holds, where C' is a non-negative constant, then

&~

u(t) < Cexp<f5(s)ds), a<t<b

Lemma 1.2.4 [9] Let u, o, and 3 be piecewise continuous functions on [0,T], and 3 is
non-negative on this interval. If

u(t) < aft) + fo B(s)u(s)ds, 0<t<T

then

VAN
~
VAN
N~

u(t) < a(t) + f a(s)3(s) exp(f B(r)dr)ds, 0

See also [1].

Proposition 1.2.5 Assume that g is bounded and Lipschitz continuous, satisfying (1.2).
Let (0, ¢) be R? valued random variables converging to z(0) in probability. Consider the

solution of the equation
ap = g(@h,y5), a5 ==(0,¢), (1.4)

Then, for any § > 0,

lim P( sup |z — zs| > 0) =0,
=0 sefo,7]

where 4z, = §(z;) and zy = 7(0).

Proof This is simply a corollary of Lemma Firstly,

t

(9(a545) — 9(@ry))dr + L (9@ ) — 9(22)))dr

t

¢ — 7y = (0, €) — 2(0) +L

Then,

t t
sup |z — 5| < |2(0,€) = 2(0)| + K | suplaf — zldr + | | (9(zr,y7) — b(Zy)))dr].
0

s<t 0 s<r

Set

S

ac(t) = |2(0,€) = z(0)[ + sup | | (9(Zr, ;) — 9(Zr)))dr|.
se[0,t] JO
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By Grownall’s inequality,

sup lof — | < e (a(0, ) = 2(0)| + sup | | (9(a.y) — 5(@,))dr ).
s<t se[0,t] JO

This complete the proof. ]

1.3 Notations

* P(X) denotes the set of Borel probability measures on a metric space X

* By(X) is the space of bounded, measurable functions X — R equipped with the
sup-norm.

* BC(X) is the space of bounded continuous functions from X to R.

* Cy(X) is the space of continuous functions vanishing at infinity equipped with
the sup-norm (assuming X is locally compact). To be more precise f € Cy(X) if,
for any ¢ > 0, there is a compact set K ¢ X such that |f(z)| < e for all z € X\ K.
This is a Banach space, provided X is locally compact. In fact, you can check
that in this case Cy(&) is the closure of C.(X), the space of continuous functions
with compact support.

Definition 1.3.1 Letp > 1.
1. A family of Borel measurable functions {f,} on a measure space is L? bounded
if sup,, §|/fa|P < .

2. A stochastic process (X;) is L? integrable if E(|X;|P) < oo for all ¢; it is LP bounded
if sup, E(|X|P) < co.



Chapter 2

Basics on Stochastic Processes

Throughout, (Q,}" , ]P’) is a probability space, the state space for random variables
are assumed to be a connected metric space, satisfying the complete and separable
assumptions, and endowed with its Borel o-algebra.

Let X be a metric space and B(X) its Borel o-algebra. Elements of 5(X') are referred
as the Borel subsets of X. A measure on the measurable space (X, B(X)) are referred
as a Borel measure. We consider only measures that assigns a finite number to every
metric ball. We denote by P(X) the space of probability measures on X'.

Then the following holds:

¢ regular: for each Borel subset A and for each ¢ > 0 there exists an open set U
and a closed set C such that C c Ac U and u(U — C) < e.

e tight: If 4(X) < oo, then for any e > 0 there exists a compact subset K < X such
that u(K)>1—e¢

2.1 Distributions of stochastic processes

Let X be a metric space. A random variable on X is simply a Borel measurable
function from 2 to X’; a stochastic processes (X;) on X is a collection of random
variables parametrized by an index set I < R. As is customary, we denote the time-
variable of stochastic processes with a subscript and we often omit the round bracket
for notational simplicity.

If X,, where «a € I, are metric spaces, the product space I, X, tis equipped with
the product o-algebra such that each coordinate map: =, : II,X, — &, is measurable.

14
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It is generated sets of the form II,c;A4; where A; € B(X,), with only finitely many A,
not equal to the whole space. Such sets are referred to as cylindrical sets.

A stochastic process X; is a measurable map from 2 — II, X, its probability distri-
bution is the pushforward measure (X.).P on II,X. The distribution of a stochastic
process are determined by their finite dimensional distributions.

Definition 2.1.1 Let (X;,¢ € I) be a stochastic process. The finite-dimensional dis-
tribution of the process at time t;,...t,, where t; < to < --- < t,, t; € I, is the joint
distribution of (X;,,...,Xy,):

Pty ,otn (T Ag) = P{w : Xy (w) € A1,. ., Xy, (w) € An),

where A; are Borel measurable subsets of X'. The collection of such probability mea-
sures is called the finite dimensional distributions of (X}).

We denote (X, € Ay,..., Xy, € Ay) i={w: Xy, (w) € Ay, ..., Xy, (w) € Ap}.
Definition 2.1.2 For any ¢; < --- < t,, there is a projection th,...t,LXI — X" defined by

Tty ,tn (0) = (0(t1), ..., 0(tn)).

The following theorem guarantees the existence of a stochastic process with given
finite-dimensional distributions.

Theorem 2.1.3 (Kolmogorov’s extension theorem) Suppose that a family of proba-
bility measures {j, ..+, } are given, where n runs through all times pointst; <t < ..., tp,
t; € I, satisfying the following consistency conditions. Foranyn e N, any t; < --- < ty41,
t; € I, and for any A; € B(X), the following statements hold:

(1)
[ty (A1 X X A X X) = gy g, (T A,

(2) for any permutation o of {1,...,n},
[ty et (A1 X XCAR) = i)t (o) X0 X Ag(n))-

Then there exists a measure on X! such that its finite dimensional projections agreeing
with p, . +,. Consequently, there exists a stochastic process (X;) on some probability
space such that

Pt tn (I A) = P({w : Xy, (w) € Ar, ..., Xt (w) € Ap}).
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A stochastic process is easy to analyze, if any family of random variables {X;,,... X}
are independent, in which case y;, .. ¢, = I, s, For stochastic integrals, the simplest
are those whose increments are independent.

Definition 2.1.4 A stochastic process (Y;,¢ > 0) is stationary if its finite dimensional
distributions are invariant under translations, i.e. for any s > 0,

l
(Y;‘/1+Sa e 'Y}/erS) = (}/tu s Kfm)

Exercise 2.1.5 Construct an example of a stochastic process for which the proba-
bility distribution of its one time marginals are the same for all time, but it is not
stationary.

2.2 Measure Separating sets

Definition 2.2.1 A collection E of measurable functions is said to be measure sepa-
rating (or measure determining) if, for any two probability measures p and v on X,

LfduszdV VfeE = u-w

The set of functions B,(X) is clearly measure determining, however it is often to be
too large to be of any use. In fact, B,(X) is not separable. It is sufficient to test these
on the set of uniformly continuous functions.

If f: X > Rwe denote /™ denotes its positive part: f*(z) = max(f(z),0).

Theorem 2.2.2 [14, Thm. 5.9, pp39] Let X be a metric space, and let u,v be two
probability measures on X. If

| sdn= | sav

X X

for every bounded and uniformly continuous function f : X — R, then u = v.

Proof Since probability measures on a metric space are regular, they are determined
by their values on closed sets. It is sufficient to show that u(C) = v(C) for any closed
set C. Let C be a closed set, define a sequence of functions f, : ¥ — R by

fu(z) = (1 —nd(z,C))"

where d(z,C) = infycc d(z,y). We have f,(z) = 0 for z € C. Sinced(z,C) > 0 for z ¢ C,
fn(x) — 0 as n — . Therefore f,(z) > 1¢ and each f, is Lipschitz continuous:

| fu(®) = fu(2)| < nd(z, 2).
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For each n,

Taking limit n — o and noting that |f,| < 1, we can interchange the limit and the
integrals (by the Dominated Convergence Theorem). Thus u(C) = { fdu = { fdv = v(C)
for all closed sets, concluding that the two measures are the same. (]

Definition 2.2.3 Let X be a metric space. A set of functions is said to separate points
if for any z + y in M, there exists a function f such that f(z) + f(y).

The collection of functions of the form {d(x,-) A 1: 2z € X} are bounded continuous
functions, and separate points. Pointing separating is a fairly weak property, for
example the set of linear functions on R" separate point.

A subset M of C(X;R) is an algebra if it is a vector space and fg € M whenever
f €M and g € M. The following theorem holds for any compact Hausdorff space.

Theorem 2.2.4 (The Stone-Weierstrass Theorem.) Let X be a compact metric space
and let A be a closed sub-algebra of C(X,R) that contains the constant functions and
separates points, then M = C(X;R).

With Theorem [2.2.2] we prove the following theorem, taken from Theorem 4.5 in
Chapter 3 [3| pp.113].

Theorem 2.2.5 Let (X,d) be a complete separable metric space. Let M be a sub-
algebra of bounded continuous functions separating points, then M is measure sep-
arating.

Proof Let ; and v be two probability measures on X such that {gdu = §gdv for all
g€ M. Define H = {f +a: fe M,a e R}. Then H is a sub-algebra of C;(X') containing
the constants and is point separating. Since u(X) =1 = v(X), forany he H,

f hdy = J hdv.
X X

If f, € H converges to f in the uniform norm, then it follows that §, fdu = §, fdv. If X
is compact, by the Stone-Weierstrass Theorem, the closure of H equals C(X;R), and
the theorem is proved.

Otherwise, we use Theorem to show { fdu = { fdv for any bounded uniformly
continuous function f.
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By tightness, for any € > 0, there exists a compact set K ¢ X'such that u(K.) > 1—¢
and v(K.) > 1 — . By the Stone-Wiererstrass theorem, there exists g, € H such that
gn that approximates g uniformly on K.:

lim sup |g, () — g(x)| = 0. 2.1)

n—0 xeK.
Note that g, depends on e.

Consider the function ¢, (z) = ze~<*". As € — 0, we have ¢ (z) — z. Since |0e(9) |0 <
|9l for any bounded function g, by the Dominated Convergence Theorem, we obtain:

| gau— | gavl ~tim| | plgrau— | euloivl
X X € X X

On the other hand,
[ eetorn= | ectorivt <[ (oo = outon) duf +1 | plondin— | puton)av]
#|| (et — eutanar]

Observe that |p.|x < % where C = sup, ze —7*_Since u(X\K,) < ¢, we can write
lim sup‘f ©e(9) — p=(9n) d:u‘

n—0o0

<limSUPU (¢e(9) — @e(gn) du‘+UXK (¢e(9) — welgn)) dpl.

n—0o0

This leads to o0
lim SUPU ©e(9) — p=(9n) du' < p((Ke)° )7 = 2C+/e.

n—o0

For the first term, we applied the result in (2.1) and used the Dominated Conver-
gence Theorem. By applying the same argument to v, we obtain

lim Sup‘f 805 — e gn)) dy‘ < 20\/E

n—0o0
It remains to show that

L Pe(gn)dp = L P=(gn)dv,

for which it is sufficient to demonstrate that ¢.(g,) belongs to the closure of H.

Let P, . denote the Taylor expansion of ¢, : R — R, a smooth function, up to
order m. Using the property that g, € H and that H is an algebra, we conclude that
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P, .09, € H. Taylor expansions of smooth functions converges uniformly on any
bounded set K:
lim sup|Pp, () — ¢:(z)| = 0.

M=% ek

Moreover, fixing e, since g, and g are uniformly bounded, we have P,, . © g, — - © gn
uniformly on X as m approaches infinity. Therefore ¢.(g,) € H, the closure of H in the
uniform topology.

From this, we deduce:

L Pe(gn)dp = L P=(gn)dv,

allowing to conclude that §, ¢ du = §, gdu for any g € C;y(X), and hence p = v by
Theorem O

Therefore on RY, the space of continuous functions with compact support is mea-
sure separating, and so are the space of smooth functions on compact supports. This
can be verified with Urysohn’s lemma and smooth Urysohn’s lemma.

Let Cx(X) denote the space of continuous functions on X with compact support.
Let Cy(X) denote the space of real-valued continuous functions on X that vanishes
at infinity, which means that for any ¢ > 0 there exists a compact set K such that

[f(2)] <e.
A proof for the following statements can be found in [4, pp132,245]:

Proposition 2.2.6 If X' is a locally compact separable metric space, then Cy(X) is the
closure of Cx(X) in the uniform metric.

It follows that if X' is a locally compact separable metric space, then Cy(X') is an
algebra of C(X; R) and is measure separating.

Proposition 2.2.7 The space C% is dense in Cy(R"), and is therefore measure sepa-
rating.

If f e CyR"), then p. € Cg for any ¢ positive, smooth with compact support with
@e(x) = e "p(%), normalised so that ||¢[|; = 1. Then if f is uniformly continuous and
bounded, f * ¢, — ¢ uniformly.

For probability measures on R" with bounded supports, the set of polynomials are
measure separating. If the restrictions of two probability measures on R" on balls
agree, they are the same. These tao statement do not imply that polynomials are
measure determining on R". If the sequence of moments of a random variable grows
too fast, they do not determine the distribution. Therefore the set of all polynomials
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are not measure separating on R". Note that the integrals of polynomials of two mea-
sures agree do not imply that the integrals of polynomials of two measures restricted
to balls equal.

Let us now turn to product spaces, this will be useful for studying the finite di-
mensional distributions of a stochastic process. Let X;, be metric spaces, then the
product space II? ;| X; is metrisable. The product space inherits the completeness and
separability properties.

Proposition 2.2.8 [3, Thm 4.6, ppl115] Let X; be complete separable metric spaces,
and Ej, ¢ Cy(X}) is measure separating. Then

L={fa) =M fi(w): fie Byu{l},n>1)

is measure separating on 112 | &;.

2.3 Convergence determining set

Let P(X) denote the set of all probability measures on a metric space X'.

Definition 2.3.1 Let p,, € P(X). We say that y — u weakly, if

lim fdn, = [ fdp.
n—o0
for every real-valued, bounded, and continuous function f on X

Let z,,z € X. The sequence §,, converges weakly if and only if z,, — z.

Proposition 2.3.2 (Portmanteau Theorem) The following statements are equivalent:

(1) pn converges to u weakly,

(2) limy,—o § fdpn, = § fdp, for every real-valued, bounded and uniformly continuous
function f on X.

(3) lim sup,,_,, pn(F) < p(F) for all closed set F'.

(4) lim inf,, ., 1, (G) = pu(G) for all open set G.

Proposition 2.3.3 A sequence p,, € P(X) converges to u € P(X) if and only if every
subsequence of i, has a further subsequence that converges to u weakly.
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Proof The only if part is clear. We show the converse. If u, does not converge to p
weakly, then there exists f € C,(X) such that a, := § fdu, does not converge to { fdu.
Consequently, for some e > 0, there exists a subsequence a,, with |a,, — § fdu| > €,
which contradicts the assumption. O

Definition 2.3.4 A family A of probability measures is said to be relatively compact
if every sequence from A contains a weakly convergence subsequence.

We give a ‘compactness’ theorem that provides us with a very useful criteria to
check whether a given sequence of probability measures has a convergent subse-
quence. In order to state this criteria, let us first introduce the notion of ‘tightness’.

By tightness we mean that the measure is tightly packed into a small space, by
‘small’ we we mean the total mass can be almost packed into a compact set.

Definition 2.3.5 Let M < P(X) be an arbitrary subset of the set of probability mea-
sures on some topological space X. We say that M is (uniformly) tight if, for every
e > 0 there exists a compact set K ¢ X such that u(X\K) < € for every e M.

By Lemma [9.2.5] every finite family of probability measures on a complete separa-
ble metric space is tight. One can show that: if {y,} is a tight sequence of probability
measures on a complete separable metric space, then there exists a probability mea-
sure i on X and a subsequence i, such that u,, — p weakly.

If {X,} is a a sequence of random variables with sup, E|X,| < oo, then {|X,|} is
tight. This is due to Markov-Chebychev inequality

1
P(|X,| > a) < ~E|X,| — 0
a
as a — 0.

Example 2.3.6 Let M be a subset of P(R). Suppose that there exists a non-decreasing
function ¢ : [0,00) — [0,0) such that lim, ., p(z) = c0 and C = sup ¢, § 5 w(|2])p(dz) <
oo, then M is tight.

Proof Observe that

The quantity on the right hand side is the same for all i € M, it converges to 0 uniform
in p € M, and tightness follows. (]
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Theorem 2.3.7 (Prohorov’s Theorem) If a subset of P(X) is tight, then it is relatively
compact.

Put everything together, to show that a sequence of probability measures converges,
it is sufficient to demonstrate that the sequence is tight and that any accumulation
point is the same.

There is a converse to Prohorov’s theorem:

Theorem 2.3.8 (Prohorov’s Theorem - the converse) If X' is complete and separa-
ble, and if A c P(X) is relatively compact, then it is tight.

Once we have established that a sequence of probability measures is tight, it is
necessary to identify its limit. We discuss what set of functions to work with for this
purpose.

Definition 2.3.9 A collection F of measurable functions is said to be convergence
determining if, for any sequence u, and p in P(X), the following holds: whenever
lim,, o § fdp, = § fdu for all f € E, it follows that u, — p weakly.

Recall by convergence determining we refer only to probability measures.

Proposition 2.3.10 Let (X, d) be a separable metric space. The space A of uniformly
continuous functions with bounded support is convergence determining. Furthermore,
if X is locally compact, then the space of uniformly continuous functions with compact
support is also convergence determining.

Proof Let {z;} be a dense subset of X'. Define
fin(®) =2(1 —nd(z,x;))*.

For any open set GG, define

pr(x) = > fin(x) A L.

{i,;n=1,...,k: By, ()G}

Then ¢y, is uniformly continuous with support contained in the ball centred at z; with
radius max; <, d(x;, z1) + 1.

It is clear that 1¢ > g¢,, and g, — 1g. Let uy, p € P(X) be such that lim,,_,, § fdu, =
§ fdp for every f € A. Then,

lim inf u(G) > lim inffgmduk = ngdu.
k—0o0 k—00
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Taking the limit £ — oo allows us to conclude that u,, — p. Note that the support of g
is contained in a compact set if X is locally compact. O

Example 2.3.11 Let X = R". Denote by CJ'(R") the space of smooth function van-
ishing at infinity, and by C%(R") the set of smooth functions with compact support.

Note that Cy(R") = Cx(R") (see proposition 4.3.5 in [4] pp.132]).

We have seen that Ck (R") is convergence determining. In fact, C%(R") is dense in
Cy(R"), and thus it is measure determining.

Definition 2.3.12 A family £ < Cy(X) is said to strongly separating points if, for
every z € X and any J > 0, there exists a finite set {f; : i = 1,...,k} from F such that

yalDE 5 A, fi(z) = fi(y)| >

For X = R, we can take a smooth function f with support in B,(§/2) such that
f(z) = 1. Then |f(z) — f(y)| = 1 if y € B,(d). Thus, the space C%(R") strongly separates
points.

Theorem 2.3.13 Let (X,d) be a complete separable metric space. IfE is an algebra
of bounded continuous functions that strongly separates points, then E is convergence
determining.

2.4 Fourier transform of measures

Let f € L}(R™;R), its Fourier transform
fO) = | e @ds AeR

is uniformly continuous, and is bounded by the L; norm of f: |f|x < |f[:. Further-
more lim|y_, | f(N)| = 0 (Riemann-Lebesgue lemma). We can identify f with a finite
measure p(dx) = fdzx.

Likewise, if 1 is a finite Borel measure on R", we can define its Fourier transform.

Definition 2.4.1 The Fourier transform of a finite Borel measure x on R" is a complex-
valued function given by the formula:

A\ = f O p(d).
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The Fourier transform of a finite measure is bounded by x(R) and uniformly continu-
ous.

Proposition 2.4.2 [ftwo finite Borel measures on R" have the same Fourier transform,
they are equal.

Proof Firstly, if f € S, the space of Schwartz function of C* functions of rapid de-
crease,

| fdu= | f@hta)a
R" R"™

If iy = fi2, then (g, fduy = Srr fdus. Since the Fourier transform is a bijection on S,
the above holds for all f € S, hence p; = puo. O

Lemma 2.4.3 If both f and f are in L', then the Fourier inversion formula holds:

1 . .
P 7’L<:B,)\>
£ = 5= | F)eT eV

where x - \ denotes the scalar product on R".

If f is not integrable, we cannot apply the Fourier inversion formula, it is useful to
multiply by a rapidly decreasing function exp(—ex?/2).

2

Example 2.4.4 If p.(2,t) = ﬁe*%, then p.(z) = exp(—ez?/2).

Denote by v and 4" the standard Gaussian measure on R and on R". The Fourier

1 _le?

transform of v = o ? exp T de is

and 7" = ®, S0

L;eixixw(d@ _ (L o

Theorem 2.4.5 (Lévy’s continuity theorem) Let 11, n € P(RY). Then if i1, — p wealkly,
then i, — [i pointwise. Conversely if (i, — f pointwise and f os continuous at 0, there
exists a probability measure i such that f = j and pu, — p weakly.
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2.4.1 Gaussian Measures

Definition 2.4.6 A Borel measure p on R” is Gaussian if there exists a non-negative
symmetric n x n matrix K and a vector m € R" such that

J GOy (d) = O 5EAN (2.2)

Denote by v and 4" the standard Gaussian measure on R and on R". The Fourier
P
transform of v = —1 exp_% dz is
(2m)2

A idx 1 2 a2
’Y()\)z € = €Xp > dr=e 2.
R (2m)2
and 1" = @N% SO
. ' )
J e%Zj >\j$j,y(dx) — (J 62)‘ixi”y(dxi)" _ 6_%_
R R

Lemma 2.4.7 Let C be an invertible positive definite symmetric matrix. For « € C,

det C o= E82 aley) g — e%2<0*1y7y>‘
@) Jge

Proof: First assume that « € R, then the left hand side of the required equality equals
(@) BVALC [ e HOEmaC e gy )

(2m) "2 V/det Cea;«ﬁly’y> e~ 2(0m) iy
Rn

2
— 50Ty

by translation invariance of the Lebesgue measures. The result holds for a € C since
both sides of the equality are analytic functions of o and they agree on R. i

If K is a symmetric non-degenerate matrix, and m € R", by translation invariance,

we see that then
= 1 67%<K_1(x7m), mfm>d$
(2m)" det(K)

is a Gaussian measure with Fourier transform i(\) = A= 3(EAN)

Define the heat kernel on R"™:
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Example 2.4.8 On the real line, a Gaussian measure has the Fourier transform
a\) = e“‘m_#. It is either a Dirac measure, 4,,, or it is absolutely continuous
with respect to the Lebesgue measure with density p,2(m,z) where m = {5z u(dx) is
the mean and o2 = { 2%u(dx) is its variance.

Recall that
f sOOfdu—f © d(fap).
X Yy

Observe that (g, ¢/“*) y(dx) = (£+41)(1) where the second / denote the linear functional
z+— {{,z)). Hence is equivalent to (£, ) (1)e’*m—aEAN,

Proposition 2.4.9 A Borel measure p on R" is a Gaussian measure if and only if for
every linear functional, ¢ : R" — R, the push-forward measure /.. on R is Gaussian.
The Gaussian measure p has a density with respect to the Lebesgue measure if and
only if K is non-degenerate in which case the density is

1 67%<K_1(w7m), :vfm>'
(2m)" det(K)

Proof Let ;1 be a Gaussian measure on R", with Fourier transform given by (2.2). Let
¢:R" — R be linear, then /(z) = (/! z) for some /! € R". For A e R,

En)O) = [ Mtapte) = | M)

_ f ¢EAD (4 eiA<zﬁ,m>—§<mﬁ,eﬁ>7

the last step follows from (2.2). Therefore /.4 is a Gaussian measure with mean (/% m)
and variance (K /%, (%),

Suppose that for every linear functional ¢ on R", /,u is Gaussian on R. Below we
identify the linear functional ¢ with /#. Denote their mean and variances, respectively,
by m(¢) and o%(¢).

(6) = atuldo) = [ thuutit) = | t@yino) 2.9
which is linear in ¢ so m(¢) = (¢, m) for some vector m. In addition,
7 (0) = [ (= m)Peantan) = | () —om)Putdy) = | oy —m)Pp(ay).
As a quadratic function, there exists K such that o2(¢) = (K¢, ¢). This means that

(yep)(a) = eia<&m>—§<m,e>7
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which implies that
j ) @i@’@),u(dx) _ (é*u)(l) _ ei(Z,m>—é<K€,£>7

and p is Gaussian. L]

Proposition 2.4.10 If i1 is a Gaussian measure determined by : . X (dx) =
IAm)=3 KA then the vector m and K are respectively the mean and the covariance
matrix of the measure, which means that

m= | xuda),
R’IL

and

(Ku,v) = fRn<x —m,uyx —m,vyu(dr).

Proof Let /(x) = z;, projection to its first component, {¢;} the standard orthonormal
basis of R”, then (m, ;) = {{e;, z)u(dz) by , and

J {x —myu)Xz —m,uyu(dr) = (Ku,u),
R"

By polarization we obtain the formula for (Ku,v). O

2.5 Gaussian Random Variables

A random variable with a Gaussian distribution is called a Gaussian random variable.

To rephrase Proposition[2.4.10]in terms of random variables, let X = (X;,...,X,) a
random variable with Gaussian distribution p, where i = e“A™=32)_ Then E(X; —
m;)(X; —m;) = K;; and EX = m. Consequently, any Gaussian measure on R" is
determined by its mean and its covariance operator. Furthermore, if K is diagonal,
the measures decomposes into products of measures on R leading to:

Corollary 2.5.1 A set of Gaussian processes (X, ..., X,) is independent if and only if
their covariances vanish.

Lemma 2.5.2 Assume that a sequence of Gaussian random variables on R? converge,
weakly, to a random variable X, then X is a Gaussian random variable.

Proof For simplicity, assume that these variables are real-valued. Let X,, — X weakly.

Let m,, = EX,,, and K,, the covariance matrix of X;. Then E[ei<)"m">_%<K)"A>] — EeitX,
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by (2.4.5), for every \. The convergence of the left hand side implies that m,, — m and
(KA, \) converges too. Thus the Fourier transform of X is ji(\) = eEXm)—=3 KXY g0
the limit is Gaussian. O

Theorem 2.5.3 If X is a Gaussian random variable on R? with covariance operator K,
and A : R® - R” a linear map, then AX is a Gaussian random variable with covariance
AK AT,

Proof We only need to identify E[¢!*4%)] for any \ € R™:

E[ei<>\,AX>] _ E[ei<ATA,X>]
_ ei(AT)\,m>—%<KAT>\,AT>\>

_ 6i<)\,Am>f%<AKAT>\,)\>

This shows that X is a Gaussian random variable with mean Am and covariance
AK AT, O

The theorem holds also if X is Gaussian random variable on a Banach space E,
and A : F — F is a bounded linear map from E to another Banach space.

Note that there exists a random variable X = (X, X3) with both marginals X; and
X5 Gaussian, but X is not Gaussian.

Let Z be a standard Gaussian variable on R?, X = (X,...,X,), K a matrix and C
a vector, then X = KZ + C has Gaussian distribution.

One of the nice properties of Gaussian random variables is the following. Let
(X1,...,X,) be Jointly Gaussian random variables. Then they are independent if
and only if they are uncorrelated. Linear combinations of jointly Gaussian random
variables are jointly Gaussian.

Exercise 2.5.4 If {X;,... Xy} are independent random variables with each X; Gaus-
sian on R%, and «q; € R, show that Zfi 1 a;X; is a Gaussian random variable.

Proposition 2.5.5 A random variable (X1,...,X,) on R" is Gaussian if and only if for
any a; € R, " | a;X; is a Gaussian random variable.

Before closing this section we introduce a useful lemma. First recall that if A(t) is
a differentiable matrix-valued function with A(0) = id, then
d

4 qet(A(t)) -0 = tr(5 A(0)). 2.4
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Lemma 2.5.6 Suppose that C is a positive definite n x n matrix. Then the following
statements hold.

(i) If A is another symmetric n x n matrix, then

TraceAC ™! det O (Az,x = ;
T 2n? Je
(i)
(C™Yij=—0 det O f T e g dx;

Proof: For (i) take A > 0 small so C + hA is positive, then by Lemma

N

(2r)~% J e~ G = det(C + hA)~

-

(det(I + hAC™)) 2.

ol

= (detC)~

Differentiate for h at h = 0:

(2m) "2 J i e~

For part (ii), fixing 4,j, apply (i) with a matrix A whose elements A,, = 0, except
A;j=—1and A4;; = —1, use symmetry of AC™'.

= %(det C’)_%traceAC’*l.

A Gaussian measure on a finite dimensional vector space W is the pushed forward
measure 7, (") for some linear map 7': R" — W.

2.5.1 Probability measures on Banach spaces

It is a fact that probability measures on a Banach space is determined by the set of
its push-forward measures by linear functionals. We denote by E* the dual of FE, it is
the set of bounded linear functionals on FE.

Proposition 2.5.7 Two probability Borel measures p and v on a separable Banach
space are the same, if b,y = L.v for all £ € E*.

Proposition 2.5.8 A Borel measure ;. on a Banach space E is said to be a Gaussian
measure if for every bounded linear functional, f : F — R, the push-forward measure
on E is Gaussian.
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A vector m is said to be the mean of a Gaussian measure p if for all ¢ € E*,
§¢(z)p(dz) = £(m). The linear operator K : E* — E defined by

U(Ke) = JE (z)l (x)p(dr).

is its covariance operator. If X is a random variable on Fhas distribution u, then
E(¢(X)) =m(X) and = E[{(X)¢'(X)] = L(KL).

Definition 2.5.9 Let i be a probability measure on Banach space F, define its Fourier
transform 4 : E — C by

(0 = | " du(a).

For probability measures on a Hilbert space H, by the Reisz representation theo-
rem we can identify H* with H by ¢ — (7 for ({*,z) = {(z), all 2 € H. Then we define
i H— Cby

i) = | Do)

Thus j(y) = Z.IL where /(y) = (y, ). The covariance operator K : H — H is then defined
by
Kerey = | ey o puldo)
H

If H has an orthonormal basis {e;}, X = >.7, X,e¢; is a random variable with distribu-
tion s then Ki,j = E[X,LXJ]

Remark 2.5.10 If i is a probability measure on a Banach space E then i is of positive
type with 1(0) = 1 and is continuous on E*. (i) The continuity: if ¢, — ¢ in E, then
ein(@) _ ¢i(®) for each z. The dominated convergence theorem applies.

([ If Aq,..., Ay € E*, and &,...,&{y € C, then
N

szM—&m@=f|§kmmﬁmﬂwmm>o

i,j=1 E

Theorem 2.5.11 (Bochner’s theorem) [?] The set of Fourier transformations of prob-
ability measures on R" is precisely the set of functions ji : R" — C of positive type with
i1(0) = 1. Moreover each such i corresponds to a unique .

2.6 Gaussian Processes

Definition 2.6.1 A stochastic process on R" is a Gaussian process if its finite dimen-
sional distributions are Gaussian measures.
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Gaussian processes are widely used to represent thermal noise in electronic de-
vices, resulting from random movement of electrons due to thermal agitation.

Let m(t) = EX; denote its mean and
K(s,t) = E(X; —m(t))(Xs — m(s))

its covariance function. The finite dimensional distributions of a Gaussian process at
time (¢1,...,t,) is determined by its mean (m(t¢1),...m(t,)) and the covariance matrix
(K (tis t5))-

For simplicity consider a real valued Gaussian process X; with Sé E(X;)2dt < co. We
may consider X. as a random variable on Q — L2([0, 1];R) with distribution x. Denote
H = L*([0,1];R). Then, i : H — R is given by

i) = | B pap).

As computed with R" case, there exists m € H and K : L? — L? bounded linear
such that if ¢ = {(p, )y, then Z.u(t) is a Gaussian measure With mean {p,myr> and
covariance (Ky, ¢y;2. In fact, m(t) = EX; and Ky(s So s)ds.

Definition 2.6.2 A linear operator 7" on a Hilbert space H is positive if for any x € H,
(Tz,z) > 0. It is symmetric if for all z,y € H, (Txz,y) = {x, Ty).

Lemma 2.6.3 Let X, be a Gaussian process with covariance K(s,t). Suppose that
§) E(X,)%ds < oo and define

1
s) = J K(s,t)f(t)dt. (2.5)
0
Then Sé Sé(K(s, t))2dsdt < oo, and K is a positive symmetric operator on L?([0, 1]; R™).

Proof We first show that K € L?([0,1] x [0,1]). Let m(t) = E(X;). Then,
1 1 1 r1
f J K2(s, )dsdt J f E(X, — m(t)) (X, — m(s))2dsdt
0 JO
1
J j (X, — m(t))2E(X, — m(s))2dsdt — (J E(X, — m(t))2dt)2.

0

Let f e L?([0,1];R"), then

Ll(Kf())ds—j JKst t)ds)? JJ (s,1)) 2dtJ f2(t)dtds

= ||f||L2([0,1];Rn)JO Jo (K(s,t))*dtds < o,
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and Kf € L%([0,1];R"). Finally, since K is symmetric, K is symmetric,

1 1
(Kfrg) = fo L E(X, — m(£)) (X, — m(s)f(t)g(s)dsdt = (Kg, f>,

and

1

1 1
Kfofy = fO fo E(X, — m(t)) (Xe — m(s))£(£) f(s)dsdt = E f (X, — m(®) f(B)de)? > 0,

0

i.e. K is positive. L]

Exercise 2.6.4 Prove the multi-dimensional version of the statement in the previous
lemma.

Definition 2.6.5 A function K : [0,1]?> — R is said to be a symmetric positive kernel if
the operator K, defined by (2.5), is symmetric and positive definite.

Definition 2.6.6 Let H be a separable Hilbert space. Let {e,} be an orthonormal
basis of H and T : H — H a positive symmetric linear operator. Its trace is defined by

tr(T) = > (Ten, en),

which is independent of the choice of the basis. The operator 7T is said to be of trace
class if tr(7") < oo.

If T is a linear operator, not necessarily of positive type, we define |T'| = vT7*, then T
is of trace class if tr(|T|) < co.

Lemma 2.6.7 Suppose that K is a symmetric positive kernel, then

tr(K) = Ef(Xs)st.
0

Proof Let {e,} be an orthonormal basis of L?([0, 1]). Since K is of positive type, then
1 o1
tr(K) = > (Keiei) = . f j E[(X; — m(t)(Xs — m(s))]ei(t)dte;(s)ds
p —Jo Jo
1
- EY(| (X = metian? = FEX —moeaor = BIX o

confirming the claim. U
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Definition 2.6.8 A linear operator 7': £ — F'is compact if it takes a bounded subset
of F into a pre-compact set in F. This means precisely the following: for any bounded
sequence {z,} in E there exists a convergence subsequence of 7'z,,.

If T has finite dimensional range then it is clearly compact.

Proposition 2.6.9 [?] A trace class operator T on a separable Hilbert space is compact.
For any self-adjoint compact operator on H there exists a complete othonormal basis
{©n} such that Ty, = A\, Where p,, are real numbers.

A non-negative and compact linear operator has a countable many real eigenval-
ues, for which only 0 is a possible accumulation point, the multiplicity of any non-zero
eigenvalues if finite. In particular,

Theorem 2.6.10 (Mercer’s Theorem) [?, pp243|Riesz-Nagy] Let K : [0,1] x [0,1] - R
be a real valued symmetric, continuous kernel such that Sé Sé K?2(s,t)dsdt < c0. Suppose
that

1
K10 = | K(s.0f(5)ds
0
is non-negative. Then,

K(s,t) = Z VAker(s)ex(t)
k=1

where {¢;} is an orthonormal sequence of eigen-functions of K and Key = Apey. Further-
more,

N
sup | Y] Aeer(s)er(t) — K(s,t)] — 0,
s,t€[0,1] k=1

as N — oo.

Note that e,, are non-negative and continuous.

Proposition 2.6.11 Let X; be a mean zero Gaussian process with mean zero and co-
variance K. Assuming that K is continuous. Let {e;} be an orthonormal system such
that ICGZ' = /\lez Then,

0
Xi = )V MeBrer,
h=1

where {§;} are independent standard Gaussian random variables, in the sense that

N
lim Esup| v NeBrer — Xi? = 0.
1

N—0 t<1 e
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Proof Set X}V =YV  \/A\frex. Then

N N
sup B[ XN — XM[? = sup E| Y. VMBer(®)? = sup > Aer(t),
te[0,1] te[0,1] k=M+1 t€[0,1] k=M+1

which converges to zero as N, M — oo. This is due to the fact that
N
D7 Awer(s)en(t) — K(s,t)

uniformly on [0, 1]%.

We denote by X; the limit of X}¥. Since for any 0 < t; <ty < --- < t, < 1, the
random vector (X}\,...X{') converges in the mean square sense to (X;,,...Xy,). The
limit of Gaussian random variables are Gaussian random variables, Proposition[2.5.2]
proving that the limit process (X;) is a Gaussian process. We can identify its limit by
identifying its mean and covariance. Firstly, E(X;) = limy_.,, X/, which follows from
the L? convergence. Similarly,

N
E(X{M X)) = Z vV AeBrer(s) Z VAeBrer(t) = D7 Aeler(t))(ex(s)) — K(s,t).
h—1

Thus the limit X (¢) is a mean zero Gaussian process with mean zero and covariance K.
Ul

Definition 2.6.12 The Cameron-Martin space of the Gaussian measure on the sepa-
rable metric space is the range of VK.

Note that if T : E — F'is a linear, we want to induced an inner product on 7 from that
on F as follows: if f =Tf and g = g, then {f,g) = {f, ).

Let K(s,t) = min(s,t). Taking T = v/K in this procedure to the Gaussian distribu-
tion of a stochastic process. For example, take v/ K f(s) = = §; f(r)dr. Then the range of
VK is the Sobolev space H of finite energy.

Although we do not define the Cameron-Martin space of a measure, this concept is
indeed intrinsic to the measure, not depending on whether we view the process as in
L?([0,1]) on in the Wiener space. If considered on C([0, 1]) we view C([0,1]) as a subset
of C([0,1])*. The latter is the space of measures, so f € C(|0, 1]) shall be identified with
the measure f dz. The covariance operator is then from C([0,1])* to C([0, 1]):

_ J K (s, )u(dt).
0
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2.7 Brownian motion

Definition 2.7.1 A stochastic process (X; : ¢t > 0) is said to have independent incre-
ments if for any n € N and for any 0 < ¢y < t; < -+ < tn, X4y — Xtgy- -, Xt,—t, , Ar€
independent random variables.

Definition 2.7.2 A standard one dimensional Brownian motion W; on R is a sample
continuous stochastic process starting from zero and such that

1. W, — W, is a mean zero Gaussian random variable with variance ¢ — s,

2. W has independent increments.

In particular W; — W is independent of o(W, : 0 < r < s).

Denote by F/V := (W, : 0 < r < s) the completion of the natural filtration of (W : t >
0), then by Blumenthal’s 0 — 1 law, F!V is right continuous. However, we often need to
consider a Brownian motion in a larger information system, and the filtration we use
could be generated by multiples stochastic processes on the same filtered probability
space. For this reason we introduce yet another definition of a Brownian motion.

Definition 2.7.3 Consider a filtered probability space (2, 7, P). An (F;)-adapted stochas-
tic process (W;) with values in R’ is a F,-Brownian motion if W, — W is a mean zero
Gaussian random variable with variance ¢ — s, and if for every pair of numbers 0 < s, t,
Wiis — Wy is independent of F;.

Definition 2.7.4 An n-dimensional Brownian motion with zero initial condition is a
vector valued stochastic process B; = (B},...,B}), where {B} : 1 < i < n) is family of
independent standard one dimensional Brownian motions.

Their covariance is E(B;B;) = min(s, t)I,x, where Iy, denotes the n x n-matrix.

By Kolmogorov's continuity theorem, Theorem below, we can infer that a
stochastic process with |X; — X,|, < C|t — s|? for some p > 1 and v > 0, this applies
to a Gaussian process with covariance E(W;W;) = min(s,¢), has a continuous version
which is furthermore locally Hélder continuous of order a < 3.

Theorem 2.7.5 A standard one Brownian motion on R, which we denote by W;, is a
sample continuous stochastic process starting from zero and such that

1. It is a Gaussian process;

2. It has mean zero and covariance function E(W;W,) = min(s, t).
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Proof If (X;) is a Brownian motion, then E(X;X;) = E(X(X; — X)) + E(Xs)? = min(s, t)
for s < t, and any increment process (X, — X¢,,..., Xy, , — X;,) is a Gaussian process.
Suppose that the for any n times, the process (X;,,...,X;,) is Gaussian, then

(Xtys ooy Xtpy) = (Xegs ooy Xty — X)) — (X Xy, X))
is Gaussian, as Z?:l a; Xy, + ap+1X, is Gaussian.

The other way around, assume that the process if Gaussian with mean zero and
covariance function E(W,;W;) = min(s, t), then X (¢) ~ N(0,t). Check it has independent
increments by working out the covariance. O

o2
Let p(t,z,y) := (27rt)§e_‘ 5~ denote the heat kernel.

Proposition 2.7.6 A continuous stochastic process z; with initial value x is a Brownian
motion if its finite dimensional distributions are given by:

P(l’tl € Al, sy Ty, € An)

= J J p(ti,z,y1)p(t2 — ti,y1,92) - - Ptk — th—1, Yk—1, Yk )AYk - - - dy1.
Ay Ay

Besides the Brownian motion, we have the following classes of processes:

Example 2.7.7 The Ornstein-Uhlenbeck process is a Gaussian process with covari-
ance e 7I*=#l; and the Brownian bridge, starting from the origin at time 0 and ending
at the origin at time 1, is a Gaussian process with covariance min(s,t) — st.

It is easy to verify that W, —t1¥; is a Gaussian process, and so is e~ !W5,. What are their
covariance? Equally, check that Sé g(s)Wsds is a Wiener process if g; is a continuous
deterministic function. Hint : Proposition [2.5.2]

2.7.1 Self-similar stochastic Processes with stationary increments

Definition 2.7.8 A stochastic process (X; : ¢ > 0) is said to have stationary incre-
ments if for any n € N and for any 0 <ty < t; < --- < t,,, the probability distribution of
the stochastic process Xy, 4s,..., Xt,+s is independent of s > 0.

Definition 2.7.9 A stochastic process X; is self-similar, with exponent H € (0, 1], if
Xat = aHXt for all ¢.

A Brownian motion has stationary increments, and is self-similar with self-similarity
exponent H = %
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Remark 2.7.10 Note that if X,; = ¢/’ X; and H > 0 and X(t¢) is continuous at zero,
then X(0) =0 a.e..

Proposition 2.7.11 Suppose that X; is real-valued such that X, = 0, H-self-similar ,
with stationary increments, and with finite second moment, then

1
E(X¢Xs) = 5o (2 + 52 — |t — s[),

where 0% = E(X1)2.

Proof This follows from a simple computation:
1 1
E(XiX,)* = =5 (B(X; — X,)* = E(X)* = E(X,)?) = [ + 5™ — (¢ — )" )]E(XD),

proving the claim. L]

A generalisation to independent sequence of random variables are m-dependent
sequence: X, and X,, are independent if |[n’ — n| > m. If X} is a stochastic process, we
define:

o(n) = Xpy1 — Xy

to be the process of increment 1.
Definition 2.7.12 We say that X; has long range dependence ( rather, its increment

has long range dependence) if there does not exist a number m such that g(n + k) and
o(n) are independent for all £ > m and all n.

Proposition 2.7.13 If X; is a continuous self-similar process, with self-similar expo-
nent H € (0,1)\{3}. has stationary increment and finite second moment, then X, has
long range dependence. In fact, if R(n) := E(on00) then as n — 0,

R(n) ~ H(2H — 1)n*12E(X?).

Proof Since X (0) =0,

R(n) = E[X1(Xni1 — Xa)] = 2[((n + 1?7 =) — 02 — (n— 1)) E[(X2)?],

concluding the proof by Taylor expansion. O

Remark 2.7.14 Observe that if H € (0, 1), then R(n) decays sufficiently fast,
YIR(n)| = > 0% < .

If H > , on the other hand, the decay in correlation is slow, and the series Y} |R(n)| is
not summable.
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Definition 2.7.15 Let H € (0,1]. If a real valued mean zero continuous Gaussian
process, with B} = 0, has covariance

1

S+ 52— |t — sPE[(BI)?),
it is called a fractional Brownian motion (fBM) with Hurst exponent H. It is a standard
fBM if E[By(1)?] = 1.

Proposition 2.7.16 A fractional Brownian motion is self-similar with exponent H and
has stationary increments.

Proof Firstly, X/ := B!l is a Gaussian process. It is sufficient to identify its covari-

ance:
1
E[X{/ X[ = §a2H(t2H + 5 — |t — sPE[(B")?] = E[(a” Bf')(a" BI),
and thus X" = BH in law.
Similarly, for any a > 0, the increment process X; := B, — B; is Gaussian, one
compute:

1
E[(Biio — B/)(Biha — B)] = S (12 + 82 — |t — s)E[(BY)],

hence X and BY are equal in law. O

2.7.2 Integral representation for fractional Brownian motion

The following theorem will need the basics on a Wiener integral. Wiener integral is of
the form SS fsdWs where f :[0,7] — R is such that SOT(fS)st <wandt<Tand W is a
one dimensional Brownian motion. Let S denote the space of simple functions : f e S
is of the form

N
f(t) = 2 aklAk (t>
k=1

where Aj € B(R). We can in fact choose Aj, = (a, b;] and define

1 N
|, rwam = 3 o, — B, ).

k=1

The integral Sé f(t)dW; is a Wiener process on can show that

t
E( fo FedWo)? = | £z
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If f € L?, we take simple functions f, — f in L?, then S(t) fn(s)dW, converges in L? which
we define to be S(l) fsdWs. Itisometry and Gaussian property remains to hold. Similarly,
for any ¢

t t t
E(J fdesJ gdes) = f fsgsds-
0 0 0

Definition 2.7.17 If W' and W' are two independent Brownian motions, we define
W; = W} fort > 0and W, = W2, for t < 0. Then W, is called a two sided Brownian
motion.

Theorem 2.7.18 Let
0 H-1 H-1 ¢ H-1\2
X, :J ((t—w)" — (—u) _2)qu+j (t — )" 4) 2w,
Then X, is a fractional Brownian motion.

Proof For v < t, let

t—wf2—(—w)f~2, t>0

(t—u)f2, t<0.

f(t7u) = {
We first show that for any ¢t > 0, f € L?([~o0,1)].
t 0 ) .
J (f(t,u))Qdu = f (t— U)H_E — (_U)H—i)Zdu + J (t — u)ZH—l du
—w w .

1 1
__ 42H _SH—%__SH—%QU _ §)2H-1 g
i <Lo<1 VI3 () >d+f0<1 J2HT gg)

= ¢ Jl (f(1,u))*du < .

Note that X; and Y; are Gaussian processes. Observe that the integrals from (—c0,0)

and [0,7T) are independent, also (Sg[(t +h—w)f2 — (h—w)H"2)dW, and Sffh(t +h—

w)f~24W, are independent. Thus,

0 1 1 t+h 1 h 1
E[X,1n — Xp)? = J_ (t—uw)t2 — (h—w2)%du + E[(L (t+h—uw)i 24w, — L (h—uw)=2dW,)?]

0 ) )
- J—w((t — w7z — (—u)"72)?du
+ EJh((t +h— u)H_% — (h— u)H—%)2du + Jt+h(t +h— u)2H_1du

0 h
t+h

h
:f ((t-l—h—u)H*% —(h—u)Hé)2du+J‘ (t+h—u)2H’1du

—0 h
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— 2 J_l [£(1,u)]*du.

By polarisation,

E[X (1) X (s)] = %(#H + S |t — 2 f [f(1,w))du.

Since X (¢) is a Gaussian process it is a {BM. ]

2.8 Sample properties

A stochastic process Y; is said to have a certain property (P), if for almost surely all
w, t — Y;(w) has the property. For example,

Definition 2.8.1 A stochastic process (X;) is said to be continuous, if for almost
surely all w, t — X;(w) is continuous. Similarly, a stochastic process is Hélder contin-
uous if ¢t — X;(w) is everywhere Holder continuous, almost surely.

2.8.1 Holder spaces

Holder continuity is a measurement for continuity. Given a function f : R — R, one is
interested whether there exists a function w such that

[f(2) = fF()l < w(lz —yl).

A useful way to strengthen the notion of continuity is to require its modulus of conti-
nuity proportional to |z — y|* and « € (0, 1].

Definition 2.8.2 Let D be an open subset of R?. A function f : D — R" is locally
Holder continuous of exponent « if for every uy € D there exists a neigbourhood of D
and a constant ¢ such that for u,v € D,

[f(u) = f(0)] < clu — o[

here | — | denotes the Euclidean norm. In our finite dimensional setting this is equiv-
alent to require that for relatively compact subset D’ of D
IO RS (G
uFv,u,veD’ |’LL - U‘

The definition for Hoélder continuity extends to functions between metric spaces.
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Definition 2.8.3 Let D be an open subset of R?. A function f : D — R" is uniformly
Holder continuous of exponent « if

sup M < O,
uFv,u,vED u—wl*
The quantity |f(u) — f(v)
u) — v

|f|a = sup

uFv,u,veD |U - U|a
is the Holder semi-norm of f on D.
Definition 2.8.4 A function z : R — R is locally Hblder continuous of exponent « if

| Ty — |
sup T e < 0,
0<uzv,u,ve K |u - U|

for any compact subset K of R.

We denote by C* the space of locally Holder continuous functions. For example,
the space of paths C* = C*([0,T],R%) consists of paths with finite Hélder semi-norm.

C*([0,T],R") = {x :[0,T] > R" : |x]o < 0.}
Recall that a function f : D — R, where D c R" is concave if for any =,y € D and

any t € [0, 1],
[tz + (1 =t)y) = tf(2) + (1 - 1) f(y).

Lemma 2.8.5 If f : R, — R is concave and f(0) = 0 then f(z) + f(y) = f(z + y) for any
x> 0,y > 0. In particular, for x > y,

f(z) = fly) < flz—y).

Proof Indeed, z = ;-0 + ;T (z +y). by concavity,

f(z) = 2 F(0) + ——f(z +y),

r+y r+y
Similarly,
x
= 0 .
fy) x+yf( )+x+yf(x+y)

Adding up the two to conclude. L



2.8. SAMPLE PROPERTIES 42

Example 2.8.6 Let o € (0,1). Consider f : Ry — R, f(z) = |z|*. On any interval
[€2,0), " = a(a—1)2*"2 < 0, so f is concave on (0,), and on R,. Thus, for z > v,
y|* < |z — y|*. This shows that |z|* is uniformly Holder continuous.

|z[* =

Introducing a norm:
Iflgoe = 1fle + [ flla-
The space C%*(0,T];R") is the completion of the space of C* smooth functions, from
[0,7] to R", under the C** norm.

If © is a bounded subset of R", there is a continuous compact inclusion map: for
0<a<pB<1, C gl

[f(uw) = f)] _ (\f(U) — f(v)]

u — vl ju— vl

£l = ) 1) - f)

< (If18)% (2| flo0)" 5.

If the stochastic processes has continuous sample paths, by its distribution we
mean the measure it induces on the Wiener space C([0,7]; X).

2.8.2 Kolmogorov’s continuity theorem

Given a collection of random variables index by [0,T], apriori we know nothing of its
measurability in time or its continuity. We can often choose a continuous version

Definition 2.8.7 1. Two stochastic processes X; and Y; on the same probability
space are modifications of each other if for each ¢, P(X; = Y¥;) = 1. The exceptional
set {w : X;(w) + Y;(w)} may depend on ¢. Such processes are said to be versions
of each other.

2. Two stochastic processes X; and Y; on the same probability space are indistin-
guishable of each other if P(X; =Y;, Vt) = 1.

By a Kolmogorov’s continuity theorem, also referred as Kolmogorov-Chentsov The-
orem, we mean the following type of result: Given appropriate moment bounds on the
distance d(X;, X;), there is a continuous and Hélder continuous modification. Fur-
thermore, there is a bound on the L, norm of the Hélder norm of the modification. In
R!, Kolmogorov theorem infers continuous modification of a stochastic process from
bounds of the form

E|X () — X(s)|P < CJt — s[5,

We use the notation | X; — X, = E(| X (¢t) — X(s)|p)%.
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Definition 2.8.8 A stochastic process X; is continuous in probability (also known as
stochastic continuity) if for any s, and any § > 0,

%imIP’(]Xt — Xs| > 96) =0.

Markov-Chebechev inequality implies that P(|X; — X;| > ) < CoPE(|X; — X,[P) <
C|t — s|'*#, should the moment estimate given above holds. For example, a Poisson
process N, satisfies that | N, — N[, = », it is stochastic continuous, however

does not have a continuous version.

Theorem 2.8.9 (Kolmogorov's theorem in dimension 1) Let (X;,0 < ¢t < T) be a
stochastic process with values in a Banach space E , such that for a number p > 1
and some § > % and some constant C,.

| Xe = Xsllp < Cplt = sI°.

Then there exists a continuous modification, X;, which is furthermore Hélder continu-

ous. For everyy <6 — =, X € C'([0,T]; R) almost surely and
H‘X"Y ‘Lp Z 6—*—’)/ < 0.
nENo

Example 2.8.10 Consider the probability space ([0,1],5([0,1])) with Lebesgue mea-
sure, and the stochastic process:

1, t=w
Xt(w):{o t+w

For any w, X; is not a continuous function. The conditions of the Kolmogorov Theorem
holds, we can take X;(w) = 0.

Example 2.8.11 Let f, : [0,7] x R - R and f : RY » R be measurable functions.
Suppose that we have that for p > 1, as n — o,

Apply Kolmogorv theorem, we see that for every v < 1 — % — %,

Jt(fn(r,x) f(z drH <SKno P|t—5]

S

< CKn_% ,

|2 (fu(r,2) — f(x)) dr|
sup =
s¥t,s,t€[0,T] |t - S|

i.e. the Holder norm of the map ¢ — Sé(fn(r, z) — f(z))drisin L,.
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There is a version of Kolmogorov’'s theorem that applies to a stochastic process
with values in a general metric spaces and indexed by a parameter in subset of a
n-dimensional Euclidean space. We shall keep it simple, taking (X;);cp where X; are
real valued and D c R".

Lemma 2.8.12 Consider the dyadic partition of [0,1] to 2™ points, this divides [0, 1]¢
into sub-cubic of side length 5w Let Sy, denote the collection of vertices at level m on
these sub-cubes and set S = U, Sy,,. Let (X;)es be a family of random variables indexed
by S with the property that there exists 6 > % such that

-

sup E(|X, — X;|P)» < CJt — s|°.

s<t,s,teS

Let S, denote the nearest neighbour pairs in S,,, then for every v < § — %, Jor almost
surely all w, the_following holds for some constant C':

(’Xs — Xi p1i ~
E[( sup 7) ]p < CC.
(s,t)eumgm ‘S - th
In particular, sup,, Sup, .3, \)‘(;_—tfgt‘ is_finite almost surely.

Proof Note that S,, contains points whose coordinates taking values in {%,k =
0,1,...,2m}. The cardinality of S, is at most C2™¢ where C = 2¢. We care about
the exponential rate md, not the factor C, as m is taken to infinity while d is held
fixed. For this reason, #(S,,) is said to be of order omd - Since Sm denotes the nearest
neighbour points in S,,, the cardinality of S,, is also of order 2”¢. Hence,

B[ (sup sup (lif—)ftl)p] g;E[( sup (XXl

— 1l ~ —my
mo(s)eSy, 19 t] (5,£)€8m 2

<2 % 'X; =]

m t)eS‘m
Z m(8p—p) < sz gmdgm(yp—3p)
™ (s,t)€Sm
This is finite if vy < § — 5, concluding the proof. ]
For continuity statement, we consider the open cubic (0, 1¢) and let D,, = (2’“—1, ey (Qk—f) :

0 < kj < 2™} 1 (0,1)4, it is the set of points whose coordinates are at level m

Lemma 2.8.13 Let D,, denote the nearest neighbour pairs in D,,. If f(t) is a real valued
function defined on U, D,,, n (0,1)¢ such that there exists v > 0 and C > 0 so that
t) —
wp  sup MO SO)

= C < o,
m g t€Dpm:|s—t|=2—"m |t - 3’
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for any nearest neigbours s,t on D,,, then f extends to a continuous function on the
cube [0,1]?, and the extension is Hélder continuous of order ~, with Holder constant CC
where C is a constant independent of f.

Proof For every point s € [0,1]%, on the grid D,, there is a closest point, denote it by
mm(s), in particular
[T (s) — s| < 24227,

Note that |7m,,(s) =y 1(s)| < 22%2 2=™, and the sequence {r,,(s)} is a Cauchy sequence,
converging to s. Furthermore, there is a chain of neigbouring pairs at level m con-
necting 7,,(s) to m,—1(s) (at most of length 2d). By the nearest neighbour assumption
on the Holder norm,

1 (7tm () = f(mmar(s))] < 270+ 0 277,

Since |}, f(7m(s)) — f(7mm+1(s))| is summable, f(m,,(s)) has a limit which we define to
be f(s): )
f(s) = Hm f(mpm(s)),

and )
1£(s) = f(mm(s))] < CCy27™7.

On a point in U,,D,,, f agrees with f, for the nearest dyadic point to it is itself. We
have defined an extension of f to the cube, which we denote by f.

We proceed to show that f : (0,1) — R is Holder continuous. Take any s + ¢ from
the cube, close to each other, then there exists mg with

1 1
W<|S—t|<2m0.

Then |mm,,(s) — Tm, ()| < C(d)27™0 for a universal constant C(d) depending only on d.
There is a short chain of nearest points in D,,, connecting m,,,(s) and 7, (t), so

|f (T (8)) — f(7tme (8)| < C(d)C27™07.
Put these together,
£ () = F@) < 1F(8) = f (o ()] + [ (5) = f(mg (£))] < 20(d)C27™07(27™0)7 < CC'[s — #7,

where C’ depends only on d. This proved that the extension is Holder continuous of
order ~. L]

Definition 2.8.14 If a family of random variables are indexed by a set D € R", it is
often referred as a random field.
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Definition 2.8.15 Let p > 1, a > 0, we define the following function space of adapted
stochastic processes.

X, — X
Bop = {X:Xte]-},supw < oo}.

s<t |t - 3|a

Theorem 2.8.16 Let D be a compact set of R%. If (X;)ip is a random field in B, ,, for
somea >0,p>1, and C > 0. And its norm is bounded as follows:

sup | X, — Xyfp, < Clt — s|%,
s¥t,s,teD

Then X, has a continuous extension, denoted as X;, which furthermore satisfies that
d

forany'y<a—];,

IX Xi| H
sup
s¥t,s,teD t|’Y

where C is the constant appearing in Theorem . In particular, the space B, , <
L,(9,C") (up to modification) for v < o — %.
Proof By Lemma [2.8.12

|X5 _Xt| p

E[( sup s—ip ) ]’1’ <CC.

(s,t)eumgm ‘

Then there exists a subset of 2 of full measure, for w from this set, the Hélder norm
of X.(w) on the dyadic points is finite. Let A(w) be the smallest number such that
SUD(; eu, G % < A(w). For w with A(w) < oo, let X;(w) denote its continuous
extension. Note that the process X; is continuous in probability, so its values are
determined by its values in a dense subset and X;(w) = X;(w) almost surely. Note
that Lemma the Holder norm for each sample path of the extension z is the
same as that for  on nearest neighbours, consequently their L, norm is finite with

the same bound. ]



Chapter 3

Markov Processes

Let the state space of the stochastic processes be denoted by X, which is assumed to
be a complete and separable metric space.

Definition 3.0.1 If X; is a stochastic process, we denote by F¥ its natural filtration:
F=o(X,:s<t,sel),
which is the smallest o-algebra generated X, for s € (—o0,t] n I.

Definition 3.0.2 An F; adapted stochastic process (X;) is said to be an F;-Markov
process, if for any s < t and for any A € B(X), the following holds

P[X, € A|F,] = P[X; € A| X,] (3.1)

almost surely.

The notation P[— | zs] denotes taking conditional expectation with respect to the ran-
dom variable X;. We shall drop F; and simply call X; a Markov process. A Markov
process, with respect to any filtration, is also a Markov process with respect to its own
filtration.

3.1 Markov Processes

Proposition 3.1.1 If (X;) is a Markov process, then forany s < t; < --- < t,, and n,
and bounded measurable functions f; : X — R, the following identity holds:

B[, fi(Xe,)|Fs] = B[II fi( X, )| X ] (3.2)

47
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The set of Borel measurable functions can be replaced by the union of a set of measure
determining functions and the constants.

3.1.1 Transition Function

To address measurability issues, we introduce the notion of (Markov) transition func-
tions and assume that a Markov process has such a transition function. A Markov
transition function is used to specify the probability that a Markov process, starting
from a point z, lands in a set A at time ¢.

Definition 3.1.2 A time homogeneous transition kernel is a family of probability
measures, P := {P;(z,-): x € X,0 < t} on X, with the following properties:

(@) for each z € X, P,(x,-) is a probability measure on X’;
(i) for each A € B(X), the function = — P,(z, A) is Borel measurable.
(iii) Py(zx,-) = 6, where J, is the Dirac measure at x.
(iv) forany r < s <t, x € X and B € B(X),
Puiala,B) = | Py B)P(w.dy). 5.3)
This last equation is referred to as the Chapman-Kolmogorov equation. A family

of probability measures satisfying the first two conditions are referred to as a
Markov kernel.

Note that (3.3) is equivalent to:

Jf@ﬂ@w@=fff@ﬂwwﬂ@@) (3.4)
X X JX

Definition 3.1.3 The transition function (F;) is said to be the transition function for
a (time homogeneous) Markov process (X;) if, for any A € B(X) and s < t,

P[X, € A|F,] = Pr_s(X,, A), a.s. (3.5)

The distribution of X is called the initial distribution.

Remark 3.1.4 We shall assume that P(z,X) = 1, which means that X; does not
explode.
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Proposition 3.1.5 If (X;,t > 0) is a Markov process with transition probabilities P and
initial distribution g, then for any fi €EB(X), 0 <ty < <ty,

E(IT, £(X,,)) f f m )T P i, dyo)p(dyo)- (3.6)

Proof The proof for this is routine. For f € 5,(X), we have

BLF(X0)] = EELAX0IX]) = B £0)PCX0.di)) = [ [ £ P, dyhraldy).
Let us assume that this holds for N time points, where N > 1. Then
B(I1 £i(X0,)) =7 BB, £i(Xe)| Py 1))
—E (T (X B (Xop )| Fv-1))

Markov _
= E(Hillfi(Xti)E(fN(XtN)!XtN71)>
_]E<HN 1fl th J fN yN) (XtN 17dyN)>
The last function involves only ¢, t1,...,ty_1, S0 we can apply the induction hypothe-
sis:

—
RHS _L e L <Hf\i—11fi(yi) L fN(yN)P(yN—hdyN)>Hf\£61P(yz',dyi+1)M(dy0)

—
=J - J Y fi(ys) TGy P(yie1, dys)a(dyo).-
X X
The last line follows after bring T ;' fi(y;) inside the inner most integral. ]

A similar proof shows that following:

Exercise 3.1.6 Let (X;) be a Markov process with transition function P;(x, A), t; <
<t,, and fi,..., f, from B,(X), then

BT (X | F) = [ o] TGPty Gt ) o Py (Xaydi).
x Jx
It is sufficient to prove it for f; the indicator functions. We show this for n = 2,
P(Xiy 10 € A1 Xipts € A2 | F) = E(P(Xipts € A2 | Futa) | Lxsysuer | 7o)
E(Ptz t1 (thJrSaAQ) | 1Xt1+a€A1 | ]:)

J Pt2 tl Z, A2 Ptl(XS,dZ)
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For n > 2, the analogous conclusion follows from induction.

3.2 Semi-groups and Generators

The set of all linear operators between two normed vector spaces (F, |- |g) and (F, |- |r)
shall be denoted by L(E, F'), on which we define the operator norm:

|T|| := sup |Tz|F.

|z|p=1

A linear operator T is said to be bounded if its operator norm is bounded.

Example 3.2.1 Suppose that a (F,| - |) is a finite dimensional normed vector space.
Denote by n its dimension. Then every linear map from £ — F' is bounded. Indeed,
let {e;}!' ; be an o.n.b. basis of E, then if z = ) z;e;,

n
|Tz| < max |a;] ) [Teyl.
=1

Since max; |z;| defines a norm on F and all norms on E are equivalent, then there
exists a constant C such that max |z;| < C|z| forall z € E, and |T| < C Y | |Te;].

Proposition 3.2.2 LetT € L(FE, F). The following statements are equivalent:

1. T is bounded,
2. T is continuous,

3. T is continuous at 0.

Example 3.2.3 Let 7 : C!([0,27]) — C([0,2n]) be the derivative operator Tf = f’. Then
T is not bounded. Take f,(t) = sin(nt) and use |7 f|sx = | f/|w-

Let us consider an index set A, usually taken to be an interval [0, T],R,, or the set
of natural numbers N and Ny = N u {0}.

Definition 3.2.4 A one parameter family of bounded linear operators 7'(¢) : E — E on
a Banach space F, t € A, is said to be a semigroup if

T(t+s)=T@HT(s), T(0)=1I, (3.7)

where I denotes the identity amp,
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Example 3.2.5 The following defines a semi-group of bounded linear operators on
sespective spaces:

(LA
n!

A € My «n, the set of n x n matrices. Define 7; : R”R" by T} = Zf:o

Translation on the circle S' = ¢%: define Tj(e) = €'(+9),

Translation Semi-group. Define T; : BC(R;R) — BC(R;R) by T} f(z) = f(z + t).

Conditioned Shift. Let E° denote the space of adapted L; F;-bounded processes.
Set | X| = sup, E|X;|. Let E be the equivalent class of functions: X =Y if | X —
Y| =0.Define T, : E — E by T; f(s) = E[f(t + s)|Fs]-

Example 3.2.6 A time homogeneous Markov process induces a semi-group of linear
operators on B(X) by the formula:

Tof(x ff \Py(z, dy).

Firstly, Ty f () = § f(y)0.(dy) = f(z). Then,

1,(L.)(x) = f T Pedy) = [ [ F0)Pod2) P, dy) = Tovof(2),
in the last step we have used (3.4), the Chapmann-Kolmogorov equation.

Definition 3.2.7 A linear operator 7" on F is said to have

1. the positive preserving property if 7f > 0 whenever f > 0
2. the conservative property if 71 = 1

3. the contractive property if |7 < 1

A semi-group of linear operators 7; on E is said to have these properties if for each t,
T, does.

A semi-group of linear operators on B,(X') with positive preserving and conservative
property, on a locally conpact space, introduces a family of probability measures
satisfying the Chapman-Komogorov equation and Fy(z, ) = ¢,. In addition, x — P.(-,T")
is measurable. We do not yet have the joint measurability in (¢, z) required for defining
a transition function, it can be easily obtained from a suitable continuity in time
assumption.

If a Markov process is stochastic continuous, then for each f bounded continuous,
T, f(z) = E(f(Xy) | Xo = ) — f(z). Since the time in the semigroup is taken from an
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uncountable space, we would impose some regularity on t. A natural concept of
for a semigroup 7; on a Banach space E seems to be the norm continuity: |7; —
I| — 0, however it is rare that a semi-group of interest is uniformly continuous. The
continuity of the image 7;f where f € F is more suitable.

Definition 3.2.8 A semigroup of bounded linear operators on a Banach space E is
uniformly continuous if
|T; — I| = sup |Tix — x| — 0,

|z|=1

as t \, 0. It is called strongly continuous if

lim|Tix —z| =0
N0

foreach z € E.

exp(tA)z — x| = t|A Y, 4" 2| - 0 uniformly in .

n!

If Ais a n x n matrix,

Example 3.2.9 An example of a non-strongly continuous semigroup on BC(R;R) is:
To=1and T; =0 fort > 0.

3.2.1 Generators

Definition 3.2.10 Let 7; be a strongly continuous semigroup of bounded linear op-
erators on a Banach space E. We define its generator by: for f € F,

Lf —lim S =
t\.0 t

(3.8)

if the limit exists. The domain of £ is then defined by
D(L) := {f € By(X) : the limit exists}.

Exercise 3.2.11 Show that the translation semi-group is not strongly continuous on
BC(R;R) either. Identify its generator and a space on which it is strongly continuous.

3.3 Feller and Strong Feller

Recall that the dual space E* to a Banach space E is the set of continuous linear

functions from E to R. Then E* is also a Banach space with the operator norm ||| =

SUpP;.g %. We remark that a positive linear functional ¢ : C(X) — R is automatically
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bounded and ¢(f) < 4(|f]) = ||f|¢(1). The Riesz representation theorem states that
if C(X) is a compact metric the dual space C(X)* is the space of finite signed Borel
measures on X, with the total variation norm. ( It is customary to define the bilinear
map: {/, f) = ¢(f).) The tale of caution to a positive answer to the question is that
the dual of B,(X) are not necessarily a subset of measures. To obtain some sort of
measurability on the transition probabilities, it would be helpful if the semigroup has
continuity property. The continuity in time of 7} f is automatic if f is continuous and
T, comes from a Markov process that is continuous in probability. For continuous f,
the spatial continuity of 7; f comes from the Feller property, otherwise from the strong
Feller property.

Definition 3.3.1 A semigroup 7; on B;(X) is said

1. to be Feller if it restricts to a semigroup on C(X).

2. to be strong Feller if 7; f is continuous for any f € B,(X’) and any ¢ > 0.

Remark 3.3.2 If 7; is associated with a transition function, then the Feller property
is equivalent to that z — P;(z,-) is continuous from X to P(X) in the weak topology,
which precisely means for any f bounded and continuous, whenever z,, — z,

tim | £(y)P(en, dy) = f F(w) P, dy).

n—00

Example 3.3.3 Let 2o € X, set P(x,dy) = 6,—y,. Then T f(z) = §, f(y)P(z,dy) = f(z—=x0)
is Feller.

Example 3.3.4 (Not Feller) Let P(z, A) be a family of transition probabilities on R

given below
) o, ifz>0
P(z,-) = { b, ifz<0.
Then
- ) ifz>o0
Tf(zx) = fRf(y)P(ﬂf»d?J) = { f(0), ifz<0,

and T'f fails to be continuous at 0 for continuous functions f with f(1) + f(0).

3.4 Stopping times

A stopping time is, roughly speaking, the time that an event has arrived. This time is
oo if the event does not arrive. For a nice account of stopping times see Kallenberg [?],
here we only state the basic properties of stoppoing times. Let I  R;..
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Definition 3.4.1 A function T': Q2 — I u {0} is a (F;) stopping time if for every ¢ € I,
the event {T" < t} belongs to F;.
Note that A constant time is a stopping time, and so is T'(w) = .

Let (X;) be a stochastic process on S. For B € B(S) let
Tp(w) = inf{t > 0: X;(w) € B},
Tp is referred as the hitting time of B by (X;). By convention, inf(¢) = +o0.

For discrete index I = N, f function 7' : Q2 — N is a {F¥,} stopping time if and only
if {T(w) = n} € F, for all n. Indeed, if T is a stopping time, {T' = n} = {T' < n} n {T <
n—1}¢e F,. Conversely, {T' < n} = v, {T =i} € F, if {T'(w) = n} € F, for all n.

Example 3.4.2 Suppose that (X,,).en is (F,) adapted. Let B be a measurable set.
Then 75 is an F,, stopping time:

{Tp <n} = uUrcn{w : Xi(w) € B} € Fp.
If (X;) is an right continuous (F;)-adapted stochastic process, the hitting time of
an open set is an F;"-stopping time. Recall one of the usual assumptions: F; = F;'.

The first hitting time of closed set by a continuous (F;)-adapted stochastic process is
an F;- stopping time.

Proposition 3.4.3 Let S,T, T, be stopping times.

(1) Then S v T =max(S,T), S AT =min(S,T) are stopping times.

(2) lim sup,,_,, T;, and lim inf,,_,,, T}, are stopping times.

Proof Part (1) follows from the following observations:
{w:max(S,T) <t} ={S <t} n{T <t}, {w:min(S,T) <t} ={S <t} u{T <t}

Since
lim sup 7, = inf sup 7, lim inf7,, = sup inf 7,,
n—0 n=lp>p n—o n>1 k=n
we only proof that if 7}, is an increasing sequence, sup,, T;, is a stopping time; and if
S, is a decreasing sequence of stopping times with limit S, inf,, S,, is a stopping time.
These follows from {sup,, T}, < t} = N, {T,, <t}, {infS <t} = u,{S, <t}. 0

Given a process (X;) and a stopping time S, we define the stopped process X° by :
(X®); = Xg¢. For simplicity we remove the bracket and denote X := (X%);.
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Definition 3.4.4 Let 7" be a stopping time. Define

fTZ{AE./_"OO:Aﬁ{TSt}Eft,VtZO}.

If T =t is a constant time, Fr agrees with F;. For T takes values in N,
Fr={AeFp: An{T =n}e F,,VneN}.

Definition 3.4.5 A stochastic process X : I x 2 — F is progressively measurable if

(1) X : I x Q — E is measurable

(2) for each t > 0, X : [0,¢] x 2 — FE is a measurable map with respect to the product
o-algebra B([0,t]) ® F;.

Theorem 3.4.6 If T is a stopping time and (X;,t € I) a stochastic process. Then X is
Fr-measurable if I = [a,b] and (X;) is progressively measurable.

Proof By the definition X7 is measurable w.r.t. Fr if and only if for any B € B(R) and
t>0. {Xpe B} n{T <t} e F. Observe that

(XreBn{T <t} = {Xrn € Bl n{T <t

It is sufficient to show that for any stopping time 7 < ¢, X, is ; -measurable. We
define a random variable with values in [0, ¢]:

b (Q,F) = (2% [0,4], F @ B([0,])
Y(w) = (w,7(w)))
Then ¢ is measurable. In fact, if A€ F;, s1 < s3 < t,
{w:Y(w)e Ax (s1,5)}=An{w:T(w) € (s1,52)} € Fp.

Let
Y (Q x [O,t],]—}@B([O,t]) ~ (R, B(R))

be given by
Y(w,t) = Xt(w).

Since (X;) is progressively measurable, Y is measurable. This concludes that X, =
Y o is F;-measurable. O

Theorem 3.4.7 If T is finite stopping time, then Fr = o{Xr : X is cadtag}.
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For a proof see Revuz-Yor [16] and Protter [?].

Proposition 3.4.8 Let S, T be stopping times.

(1) If S < T then Fs < Fr.
(2) Let S <T and A € Fg. Then S14 + T'1 4c is a stopping time.
(3) S is Fs measurable.

(4) Fsn{S<T}c Fsar.
Proof (1) If A e Fg,
An{T <t} =An{S<th) n{T' <t} e F
and hence A € Fr. (2) Since Fs < Fr,
{S144+T1ac <t} =({S<t}nA)u({T <t} n A% e F.

(B) Let r,t e R, {S <r}n{S <t} ={9 <min(r,t)} € ;. Hence {S < r} e F,. (4) Take
Ae Fgandt > 0. Then

An{S<T}n{SAT <t} =(An{T <t) n{S<t}n{SAt<T nt}eF.
which follows as S At and T A t are F;-measurable, and A n {S < T} € Fgr. O

Every stopping time can be approximated by stopping times taking only a count-
able number of values.

Lemma 3.4.9 Let S be a stopping time. Define:
1
Sn = 27[2”3 +1].

Then each S, is a stopping time, S, decreases withn, and |S, — S| < 3.

Indeed,

- —
Sp(w) = j; : ifS(w)e[;n,j; ) j=0,1,2....

Ift e[, Jéinl), since S, (w) takes an integer value,

(Sn(w) <) = {Sn(w) < L} = {S(w) < 29;”} cF, R

So S, are stopping times.
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3.4.1 The Canonical Picture

Let X7 = {w : I — X} denote the collection of mappings from I to X with the product
Borel o-algebra ), ; B(X) = o(m,t € I). A stochastic process (X;,t € I) is a random
variable with values in X! and induces a measure pyx = £(X.) on X’. This measure
encodes all statistical information of the process.

Let us change the point of view, take  := X/ = {w: I — X} to be our measurable
space , this is the canonical space. We endowed with the measure induced by the
stochastic process for X..

Let m : X1 > X,
T (w) = w(t)

be the canonical evaluation map at time ¢ € I and let F; be its natural o-algebra.

Remark 3.4.10 If {,} is a family of separable metric spaces, the Borel os-algebra of
I1%_, &, agrees with the product o-algebras ®*_,B(X,,). Note that B(X)®' c B(x7!), the
latter is the Borel o-field on X' equipped with the product topology, and the inclusion
is strict. Indeed, it is clear that singletons are closed in the product topology but a set
A € B(X)®! can only depend on countably many times.

Recall that if (X;);>¢ is a Markov process with transition function P and initial
distribution X, ~ p, then for any A € B(X), P(X; € A) = E[P,(Xo, A)] = {1 P(y, A) pu(dy).
and by ??, for any Ag,..., A, e B(X)and 0 =ty <t <--- < tp,

P(X,y € Aoy, Xy, € Ap) = f f Pt (gt dyn) - Poy (o, dyD) (o). (3.9)
AO n

This inspires the following definition. Given P, pu, and A = {t; < --- < t,} < I a
finite collection of times, we define a measure pa on X"*! by

paox s )= [ e P i) PG i) @10
0 n

This collection of finite-dimensional distributions is consistent in the sense that, if
Ak =X ,

pa(Ao x - x Ap) = paygey (Ao X -+ Ap1 X Apyr X o0 X Ay).
We leave it to the reader to check the consistency. Kolmogorov’'s extension theorem
then establishes the following result:

Theorem 3.4.11 (Canonical picture) Let P be a transition function and p € P(X).
Then there exists a unique measure P, on X! such that, for any finite set of times
AcI,A={t,...,tp},

TAD, = HA,
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where ma(w) = (w(t)),., = (W(t1),...,w(tn)). Consequently, the coordinate map m; is a
Markov process on (XR+ ®),., B(X),P,) with transition function P and initial distribu-
tion p.

Equation (3.10) precisely means that the finite dimensional distributions of m; are
mA Py, it is therefore a Markov process.

Definition 3.4.12 If ;, = J, in theorem |3.4.11| we denote P, = P;, .

Recall that in the definition of a transition function we required that (¢,z) — P(z, A)
is measurable for each A € B(X). Hence,

x> Py(my € A1y my, € Ayp) = J f Pt (Yn—1,dyn) - - Py, (x,dy1)
Al n

is measurable and, by an easy monotone class argument, the same holds for = —
P.(A) for a general A € X),.; B(X). We can hence integrate P,(A) and in particular
ik P, = {7k Pyu(dz), we have

Pu(4) = | PulA) u(da).

Remark 3.4.13 The collection of probability measures P, are Markovian measures
(on the path space). If the Markov process is furthermore strong Markov with sample
continuous sample paths, they are called diffusion measures.

Let us now examine how the Markov property looks in the canonical picture, taking
I = R". To this end, let 0, : AR+ — AR+ .w(t) = w(s + t) be the shift operator. If
® : ¥R+ — R is a Borel measurable function, we introduce the notation:

By [®] = f

AR+

B(0) dPu(0),  Eo[0] = LR+ (o) P (o),

Using the canonical process X, on the probability space (AR+, B,(AR+),P,), we have
another notation: E,[?] = E,[®(X)].

Theorem 3.4.14 Let (X,):>o denote the canonical Markov process with transition func-
tion P. Then, for any ® € B,(AR+),

E,[®(0:X)]| Fs] = Ex,[®(X)] P, —a.s. (3.11)

foreachzre X.
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Remark 3.4.15 This can be written as
Ey[®o06s| Fs| = Ex,[®] P, —a.s.

We stress that the expectations in (3.11) have to be understood as integrals on the
path space. To be utterly precise, (3.11) requires that

| ot Patan = [ | 00 B de) Patar)

forall Ae Fs = o(m, 7 < s).

Since II}" , P(y;—1,dy;)u(dyo) is a consistent family of finite dimensional distribu-
tions, by Kolmogorov’s extension theorem, one obtains the following:

Proposition 3.4.16 If P,(z,-) is a time homogeneous Markov transition function, then
Jfor any initial distribution pg, there exists is Markov process on X with initial distribution
uo and such that P; is its Marlkov transition_function.

Proof It is enough to prove this for
D(W) = Vurwo(t1)eAr,nw(tn)eAn}-
Then becomes
Po( Xt 4s€ A1y, Xp4s € A | Fs) = Px (X, € A1,..., Xy, € Ap).
By Theorem [3.1.6

Pz(Xt1+5 S Al, .. 7th+8 € An ‘ ftl-&-s)

= L e L Pt (Un—1,dyn) - - Ps, (y0, dy1) (dyo)

—f J Pty (Yn—1,dyn) - - - Py (X, dy1),
Ay An
where the second line follows from with p© = dx,, proving the required identity. []

We state the following theorem without proof, which can be proved similarly to the
proof that a super-martingale has a cadlag version. The interested reader may refer
to [17], [10Q], [18], Section III.7]. Recall that ;. = ns+Fs;. However note that we must
add the condition that X is locally compact.

Theorem 3.4.17 If (X;) is a Markov process with transition semigroup (1;), which is
strongly continuous on Cy(X) where X is a locally compact space, then there exists a
cadlag modification of (X;), which is an (F,")-Markov process with the same transition
Semigroup.
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Remark 3.4.18 If (Y});>0 has cadlag or continuous sample paths, we can use similar
arguments as above to construct a measure on D(R;,X) and C(R,, X), respectively.
Since these spaces are however not in B(X)®R+, this is not a simple corollary of our
results and one has to work with the trace o-fields instead.

3.5 Strong Markov Property

Given a stochastic [process X., we define

<9TX-)’IL = XT+n

This means for w € Q and t > 0, (frX.); is a random variable given by (67X .);(w) =
X7(w)+t(w). The shift Markov process starts from z7. Observe that 27, is measurable
with respect to Frs.

Definition 3.5.1 A time-homogeneous Markov process (X;) with transition probabil-
ities P is said to have the strong Markov property if for every finite stopping time T
and for every bounded measurable function ® : XN — R, the following holds:

E(®(0rX.)| Fr) = E(®(6rX.) | X1) a.s. (3.12)
For some purposes the natural filtration of a Markov process may be too small,
e.g., the hitting times of open sets by Brownian motion are no stopping times with

respect to the natural filtration. For a given filtration (F;), we let 7, := [ _, 7 denote
its right-continuous version.

Proposition 3.5.2 Let (X;) be a Markov process with right-continuous sample paths.
If its transition semigroup (T;) leaves BC(X) or Cy(X)-invariant, then (X;) is an (F;")-
Markov process.

Proof Let 0 < s <tand e > 0. For f € BCy(X), we have that
E[f(Xt+s+6> ’}-;] = E[E[f(Xt+s+s) |~7:s+s] |—7'-s+] = E[th(Xs%) ‘-7::]
By right-continuity and bounded convergence, we can take ¢ — 0 to conclude
E[f(Xews) | FF] = E[TLf (Xo) | F] = Tif (X).

for bounded continuous test functions f : X — R. To see that this in fact holds for
any bounded measurable f, we fix A € ;" and define the measures

pa(B) =E[E[15(Xess) | FS 1], va(B) = E[T315(X;)14].
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Both measures have the same total finite mass, and
f fdu=f fdv VfeCyX).
X X
Since Cy(&') is measure-determining class, ¢ = v, as required. O
Let 7 be a stopping time and recall that the stopped o-field is defined by
Fri={AeF: An{r <t}e FVt =0}
The following two lemmas are standard:

Lemma 3.5.3 Let

(D
k+1
W= X g Y e} T Fh=apy N

Then 7, is a stopping time for eachne N and 7, | T a.s.

With this one can show that

Lemma 3.5.4 If(X,) is adapted and right-continuous, then X;1,4 € F;.

The next theorem shows that Feller processes are strong Markov:

Theorem 3.5.5 Let (X;) be a right-continuous Markov process whose transition func-
tion leaves either Cy(X) or BC(X) invariant. Then it has the strong Markov property. If
(Xy) is cadlag, the Markov property in the canonical picture is as follows: if ¢ is a real
valued bounded measurable function on D([0,1],X),

E[® 0 0:1( <0y | Fr| = 1<y Ex, [®]. (3.13)
Proof This holds if the Markov process is indexed by only a countable number of

times. Let us first suppose that 7 takes only a countable number of values {t; : k € N}
with 0 < t) <tg <--- <--- <. Then, using Theorem [3.4.14, we get for each B € F-,

18

E[(I) o 971{7—<oc}1B] = E[((I) o etk)]-{T:tk}]-B:l

ey
I
—

Il
1=

E[E[® o 0y, | Fi, 11 (r—1,315]

>
I
—

Il
1=

E[EX% [(I)]l{’f=tk}13] - E[EXT [(I)]l{r<oo}1B]-

x>
Il
—
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Here we used the fact that B n {r =t} € F; for each B e F; and ¢ > 0.
If feB,and ®(X) = f(X;), this is:

E[f(Xt+T)1{T<OO}"FT] = Ef(XT)]‘{T<OO}' (3.14)

Now assume a general 7, for the approximating sequence of theorem (3.5.3

E[f(Xt+Tn)1{Tn<CD}”FT] = ﬂf(XTn,>1{Tn<OO}'

By the right-continuity of X and the Feller property of 7;, for any f € BC (or f € Cy(&)),
holds by bounded convergence, for any f continuous and bounded. By the
standard method, this holds for bounded measurable f. It then remains to prove this
for functions of the form II}" , f;(z¢,) and thus for all bounded measurable functions.

U

The strong Markov property states that the process restarts at any stopping time
afresh.

Example 3.5.6 Let us return to Example ??, consider the transition function

Pt(xvdy)7 lfx7é0>

du) —
Ul dy) {60(dy), if o = 0,

where P,(z,dy) = pi(z,y) where pi(x,y) is the heat/Gaussian kernel. If =z + 0, we have
a Brownian motion, e.g. P(X; € A) = {, pi(z,dy) for any ¢ > 0. But when it hits zero
(it does in finite time), it gets stuck at 0: from this stopping time, this is no longer a
Brownian motion. However, the Markov property would require that z;,, to behave as
a Brownian motion starting from 0. More precisely, let 7 = inf;-¢{z; = 0}, then z,;;, =0
for all ¢.

Let us take a look from the definition of the strong Markov property. A realisation
of the Markov process from =z is:

z+ W, ifXg=z2+#0,
Xt =
0, if Xo =0,

for a one-dimensional Brownian motion (W;);>o. Take ®(c) = (c(1))?. Suppose that
X(0) =0, then Ey_(X(1))? =0, as X(¢) = 0 for all time ¢t when X (0) = 0. On the other
hand,

E((X14r)*[Fr) = E((z + Wiir)?|Fr) £ 0.

This Markov process is not Feller!! Let f be a continuous and bounded function,
then

Pf(0) = £0),  Pif(z) = Lﬂy)pt(x,y) dy.
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For t > 0, lim, o P.f(z) # f(0) in general. Take for example f(y) = 2.

3.6 Remarks

3.6.1 Treating Markov Processes with finite life time

A prominent class of Markov processes are solutions of stochastic differential equa-
tions of Markovian type. They may explode and have finite life time. Our setup
excludes a Markov process with finite lifetime, to get around the problem we either
ditch the requirement that P;(z,X) = 1 (it is customary to emphasize the condition
Pi(z,X) = 1 by referring to P as conservative Markov transition functions.) or enlarge
the state space by adjoint an extra absorbing state A and define d(z,A) = 1 for any
z € X. Then X = X U{A} is again a complete separable metric space. More precisely, if
a stochastic process does explode (has a finite lifetime), we define X; = A for ¢ greater
or equal to its life time
T:=inf{t >0: X, = A}

The Borel o algebra on X is that generated by {A} and B(X). If P, is a family of
transition measures with P, (z,X) < 1, we may define P, on X such that Pt(:c,A) =
P(x,A) for z € X and A € B(X), P,(z,{A}) = 1 — Pi(z,X) for z + A and P,(A,{A})) = 1.
The canonical space contains paths w : [0,7(w) — X where 7(w) is a positive number
such that w(t) = A for any ¢ > 7(w).

Example 3.6.1 Let (B;) be a real valued Brownian motion. The stochastic process

Xi(w) := #t(w) is defined up to the first time B;(w) reaches 2 which we denote by 7:

— i > .
7(w) = Inf{B;(w) > 2}
For any given time ¢, no matter how small it is, there is a set of path of positive
probability (measured with respect to the Wiener measure on C([0,t]; R%)) which will
have reached 2 by time ¢:

2 (® _y2
P(r <t)=P(supBs >2)=2P(B; >2) = \/7J e~ Tdy > 0.
mJz
ﬁ

s<t

This probability converges to 1 as t — 0. We say that (X;) is defined up to 7 and 7 is
called its life time or explosion time.
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3.6.2 Non-time-homogeneous Markov processes

We could also define a non-time-homogeneous transition function {Ps;(x,dy),0 < s <
t,x € X}, analogous to Definition ??. Then X; is a Markov process with the transition
function P ;(z, dy) if P(X; € A|F,) = Ps (X5, A). The following self-evident claim shows
that we can resort to this case in the sequel.

Exercise 3.6.2 Let X be a Markov process on X with transition function P,;. We
define a family of probabilities on R; x X as below. Letting z = (s,z) € Ry x X and
dz := d(3, %),

ph(z, di) = (5h+s(§)PS75+h<$, di‘)

Show that P, is indeed a time-homogeneous transition function and X, (Y, X4),
where Y; = Yj + t, is a time-homogeneous Markov process with transition function P,.

We will focus on time homogeneous Markov processes and drop the prefix ‘time-
homogeneous’ henceforth.

3.7 Invariant probability measure

We may define a transition map on P(X'), the space of probability measures :
Pru(A) = J Pz, A)p(dz).
X

Definition 3.7.1 A probability measure p on X is said to be invariant for P; if P*u = p
for all t. If (X;) is a Markov process with transition probabilities P;, then p is also
referred as an invariant probability measure for (X;).

Definition 3.7.2 Given a transition function (#;) and ¢, > 0, we define a Markov chain
with
P(xp41 € A|Fn) = Piy(xn, A), VA e B(X).

It is a Markov chain with transition probabilities P constructed as follows/
1. PO(z,-) = 6,
2. ]51(95, ) = Py (x,-),

3. Forany n>1and z € X, P""(z,A) = §, P, (y, A) P"(z,dy) for all A € B(X).
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Note that for all purpose, we can assume that ¢y, = 1. A probability measure is an
invariant measure for a discrete Markov chain with transition function (P") if and
only if P*u = u.

For the familiar example of a Markov chain (X, ) with discrete state space, for ex-
ample X = N, the one step Markov transition probabilities are the transition matrices
for which an invariant probability measure is a vector such that P = p where the
left hand side indicating matrix multiplication. On a finite state space, any Markov
chain has an invariant probability measure; it has a unique invariant measure if it is
irreducible and aperiodic.

From an invariant probability for an induced Markov chain with transition proba-
bility P;,, we can construct an invariant probability for P;, the measures need not be
the same. The following observation allow us to pass results on discrete time Markov
processes to continuous time Markov processes.

Proposition 3.7.3 Suppose that for some time t,, there exists a probability measure p
with Py = p. Then there exists an invariant measure for (FP;). If there exists at most
one invariant measure for P,,, then uniqueness holds for P;.

Proof Suppose that for some time ¢y, T} = pu for some ty, then i = % Séo T*pds is
an invariant probability measure. It is sufficient to observe that for any A € B(X),
s— T¥u(A) is tp-periodic, its average is invariant under any shift.

Since every invariant probability measure for 7; is invariant for 7' = 7;,, uniqueness
of invariant measure holds fro P, whenever it holds for any fixed time. O

Theorem 3.7.4 (Krylov-Bogoliubov) Let X be a complete separable metric space. Sup-
pose that T, is Feller and suppose that there exists a i € P(X') such that the family of
measures {T;*1 : t > 0} is tight and that t — §,, T,14du is measurable for every measur-
able set A. Then there exists an invariant probability measure for T;.

Proof Thatt— {, T;14du is measurable is equivalent to t — T7*;(A) is meaurable. Set

() = f T u(A)ds.

This {u,} is tight, we show that its accumulation points are invariant probability
measures. To this end we may assume that j,, — 7 To check 77 = 7 for any t > 0, we
only need to show that {, ¢d(T;*r) = §, pdr for any ¢ € C,(X). Since T is Feller, Ty is
a continuous function, since it is also bounded, the dominated convergence theorem
can be used:

f e d(Tim) = f Tip dr = lim J Ty dpin,
X X k= Jx
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lim — TypdTs () = lim — dT?*
kl—l};lc nkf J ty kl—l:lgo nkf f 14 s+t

N+t
lim f J edT} ( )ds—fcpdw
k—o0 N

Since ¢ was also arbitrary, this in turn implies that 7*7 = 7, concluding the proof. []

On a compact space, every family of probability measures is tight, hence the fol-
lowing Corollary.

Corollary 3.7.5 If the space X is compact, then every strongly continuous Feller semi-
group on X has an invariant probability measure.

Given the link between invariant measures fro P, and for P, it is appropriate to
present examples of Markov chains indexed by N and their invariant measures.

Example 3.7.6 Let & : X x ) — X be continuous and bounded. Define the Markov
chain by z,+1 = ®(zy,&n+1), With u ~ & iid random variables and {zg, &, k > 1} inde-
pendent. Then if f € Cy(X),

Tf(x) = B[S (@, &ns1)] = f f 0 ®(, y)uldy),

then 7'f is continuous. Hence (z,,) is Feller and has an invariant probability measure.
An example is z,4+1 = sin(zy, + §u11)-

Example 3.7.7 Consider (z,,) a Markov chain on R" with initial position zy. Assume
P (equivalently 7)) is Feller, then there exists an invariant probability measure if any
of the following holds:

1) sup,,-q E[|z,[’] < o for some p > 0.

2) sup, -, E[log(|z,| + 1)| < oo.

Proof In these settings we have P"(xz¢,-) = L(z,), and tightness for 2) follows from

below]
n c Elog(’xn’ + 1)
= < _— 7 —
P"(x0, (Bm)®) = P(|zn| > M) < SUP 1 s (M £ 1) 0, asM — o,
where B), is the closed ball of radius M centred at 0. The proof for 1) is similar. O

'Using Markov’s inequality with non-negative monotone function u > log(u + 1).
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Example 3.7.8 (Tightness) Suppose {{,} are iid and independent of z(, with E|z¢| < «©
and Markov chain z,,1 = %xn + &n+1. Assume also E|{| = a < 1. The chain is Feller

(check as in Example [3.7.7). The following arguments shows that the probability
distribution of {z,} is tight. Forall n > 1

1 1/1
Elzn41] < §E|xn| + E|&n41]| < <2E|xn_1| + a> +a

2
=a+ga+ 1(|gcn_2| +a)
! E
Satgat et tomat |z

Hence sup,,.,E|z,| < o and the system has an invariant probability measure. We
remark since we only need to show {P"(z,-)} is tight for some z(, we can simply start
the chain from a fixed point.

The Lyapunov test function method allows us to use this reasoning for more general
systems.



Chapter 4

Stochastic Differential Equations

4.1 Stochastic Integration

In this chapter we review Ito integration (stochastic integration), local martingales,
total variations and quadratic variations. Throughout this chapter, we have a proba-
bility space (12, F, F;, P) satisfying the usual assumptions. Denote by B; = (B},..., B!
an n-dimensional Brownian motion with respect to a filtration F;, which means that
{B}} are independent one dimensional Brownian motion.

We begin by defining the elementary integral Sé K,dM,; where K; is an elementary
process, and very quickly we specialise to the case of M; = B;, Brownian motion, We
seek a class of stochastic processes ( f;) with the property that there exists a sequence
of stochastic processes K" € £ with K" converges to f (in some sense), and Sé K, (s)dM;
converges (in some sense) to a limit, the limit will be a candidate for the It6 integral

§¢ f<dBs.

4.2 Elementary Integrals

An elementary stochastic process (with real values) is of the form:

oe]

Ky(w) = K_1 ()1 (t) + > Ki(w) L, 1 (t)
=0

where 0 =ty < --- < t, < ... with lim;_, t; = 00, is any sequence of positive numbers
increasing to infinity, K € Fy, K; € F,, sup, |K;| is bounded. Let £ denotes the
collection of elementary processes.

68
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Definition 4.2.1 Let K € £ and let (M) be a stochastic process. The elementary
integration is defined by

JKdM ZK (My,,, nt — My, nt).
=1

Ift € [ty,th+1), the elementary integral expands as follows:

n—1

[t = S )M ) = M) + ) ) — 0 )
=1

Exercise 4.2.2 Given K € &, compute E(K;K;(By,,, — Bi,)(Bi,;,, — Bt,)).

i+1

Definition 4.2.3 A stochastic process (X;,t € I) is L? bounded if sup,.; E[X;]?

Note that a Brownian motion (B;,t < T) is an L? bounded martingale for on any
finite time interval [0, T'].

Proposition 4.2.4 Let B; be a Brownian motion, and K € £. Then for any interval
(0,77, So KdBs,) is an L? bounded continuous martingale, and for any t > 0, we have
that

E[(Lt K.dB;)?] = E[Lt(Ks)2ds] ( Ito isometry).

Proof We may assume that the summation is from 1 to N and ¢y4; = ¢t and so

JKdB —ZK (B, — Bt,).-
=1

Note that K; € 7, and By, , .+ — By, ot is independent fo F;, ;. Without loss of generality,
assume that ¢; < t;, and t;11 <'t;.

E(K;(By,., — B)K;(By,,, — Bi,)= E[Kin(Bt — B,)E(B;

a))] =0.

i+1 j+1 J+1 B

JKdB

i+1

So

( 2(Biisynt — Biiat))?

s HM8

@
Il
—

E(K?(tiz1 At —t; A t))

t

(K,)%ds.
0

I
=
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Let s < t, we compute

N
E{Z Ki(BtiJrl - Btz‘)|f5}'

i=1
Let us analyze the ith interval I; = (¢;,¢;+1].

If tit1 < 8, then
E{K;(B;

Btz)|fs} = K’L(Bt Bt ) = Ki(Bti+1/\S - BtiAs)-

i+l i+l i

If s < t;, then
E{Ki(Bti+1 - Bti)‘]:s} =0= Ki(BtHl/\S - BtMS)'

Ift; <s<tii1,

E{K; (B By)|Fst = KiE{B, ,|Fs} — KiBy, = Ki(Bt,,,ns — Bt; ns)-

i+l

Summing up the three cases to obtain
t
E{J KrdBr|Jrs} = ZKi(BtHl/\s - Bti/\s)-
0 i
and K - B is a martingale. L]

Exercise 4.2.5 Show that if (M;) is an L? bounded martingale, then for any elemen-
tary process K, Sé K,dM, is an L? bounded martingale.

4.3 Ito integration

Let (B;) be a Brownian motion.

Definition 4.3.1 We define L?(B,T) to be the set of progressively measurable process
(f:) such that

1712, = Ef (fo)2ds < o0.
Proposition 4.3.2 The set of elementary processes are dense in Ls(B,T).

Proof We prove the case when f € L?(B) is left continuous. First assume f is bounded
and let

fals,w) = fo(w)lioy(s +Zf L cocisty

j=1
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Note that f; is F;,» measurable. Since f is left continuous and bounded,
n

falo <
|f|eo, by the dominated convergence theorem, f, — f in L?(B,T). If f is not bounded,
let fn(s) = fs1jf,|<n- Then

n—0o0)

o0
(
an - fH%Q(]M) < EJ;) fSQ(w)l{(s,w):|f(s,w)|2n}ds — 0.

Let g : [0,t] x Q@ — R be progressively measurable and such that ESOT g% (s,w)ds) <
o, it can be approximated by continuous functions in L?. In fact, setting g,(t) =
Sé ne~" =" g(r)dr, then g,(w) — g(w) in L. O

This result hold if B is replaced by an L?-martingale.

Definition 4.3.3 Denote by H? the set of L? bounded martingales and HZ the sub-
space of L? bounded martingales with initial value 0.

Proposition 4.3.4 The elementary integration defines a linear map from & to Hg.
I1:K— f K dBg
0
Furthermore it is isometric:

= | K|l 2(B,1)-
H2

f KydB,
0

The linear map K — I(K) = { K.dB, extends to L?(B,T), which is referred as Ito
integral or stochastic integration with respect to the Brownian motion. In other words,

Definition 4.3.5 If f € L?(B,T) and {f,} c £ is a sequence converging to f in L?(B,T).
Then Sf) fndBs exists. We define the limit to be S(t) fsdBs. This limit is independent of the
choices of the converging sequence.

Exercise 4.3.6 Let 7' > 0. Suppose that f, — f in L*([0,T] x Q, show that {{; f,(s)dB.}
is a Cauchy sequence in H{.

4.4 Local martingales and martingale brackets

Definition 4.4.1 An F;-adapted stochastic process (X;) is a local martingale, if there
exists a non-decreasing sequence of stopping times {7,,} with the property that sup, 7;, =
o a.s. and such that for any n, (Xf7L1{Tn>O},t > () is a martingale.
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If Xo = 0. X/" 15,0 = X/". IfT,, > 0, then X/ 15, .o, = X/". Since X/"15,_q =
X017, -0}, the role of the multiplier, the indicator function 17, ., is to allow us to not
impose integrability assumption M.

If X; is a martingale then E[X;| = E[X,] for all . If X; is a local martingale, this
may fail to hold. Furthermore given any function m(¢) of bounded variation there is a
local martingale such that m(t) is its expectation process. A local martingale which is
not a martingale is called a strictly local martingale, otherwise it is a true martingale,
see [2] for discussions related to this.

Definition 4.4.2 Let (X;) and (Y;) be two continuous processes. If for any sequence
of partitions with |A,| — 0,

n—o0

o0

lim Z(Xt/\ty+1 = Xinen) Yenen, | — Yinen)
j=0

exists in probability, we define the limit to be (X, Y );.

In particular,

o0
P . 2
(X, XD = lim Z(Xtm;%“ = Xinen)”.
j=0
For simplicity, we denote (X, X ); by (X );.

Theorem 4.4.3 For any continuous local martingales (M;) and (N;), there exists a
unique continuous process (M, N ), of finite variation vanishing at 0 such that M;N; —
(M, N), is a continuous local martingale. This process is referred as the quadratic vari-
ation of (M) and ().

We would not indulge in the proof, instead we give some examples.

Theorem 4.4.4 [Burkholder-Davis-Gundy Inequality] For every p > 0, there exist uni-
versal constants ¢, and C, such that if (M;,t € [0,T]) is continuous local martingales
with MO =0, v »

B ((M,M)3) < E(sup [Mi])” < C,E((M, M)2).

t<T

We may consider also (M, t < o) in which case the T in the above inequality holds
with 7" replaced by w0 or by a stopping time.

Exercise 4.4.5 Let ()M,;) is a continuous local martingale with M, = 0. If sup,_,, M; €
L' show that (M,) is a martingale.

Definition 4.4.6 A stochastic process (X;,t € I) is L? bounded if sup, ; E[X;]? < .
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Exercise 4.4.7 If H, K is an elementary process, the martingale bracket of their mar-
tingale It6 integrals are:

. . t
<J KSdBS,J H,dBs) =J H,Kds.
0 0 0
Hint. To show this, by Theorem [4.4.3] it suffices to show that

. . t
J stBsJ HydB; —J H;Kds
0 0 0
is a martingale.

Exercise 4.4.8 Let f,, g; be a progressively measurable stochastic processes in L?(B, T).
Then

( L fs dBS,Lgs dB.) = fo " fogads,

Hint: First assume that f = g, using the property of H2, then using polarisation.

4.5 Kunita-Watanabe Inequality*

It is possible to define stochastic integration with respect to a local martingale in the
same as we defined It6 integration, first with elementary processes, then extending by
density. This requires the Kunita-Watanabe inequality

Recall that (M, M) correspond to a positive measure and (M, N) a signed measure,
written as p* — pu~ where p,u” are positive measures. By [(M,N)| we mean the
measure corresponds to u™ + p.

Lemma 4.5.1 Lets < t, we define (M, N); := (M,N); — (M, N )s.

<MaN>§ < \/<M7M>t _<M7M>S\/<N>N>t _<N7N>S'

Proof For any a, (M — aN); > 0. This means (M, M); + a*(N,N); > 2a{M, N);. Take

a=«/% to see that

(M, N < A/{M, M)(N,N).

A similar proof shows that for s < ¢:

(M, N — (M, N, < /{M,M); — (M, M)sr/{N,NY; — (N, N)s.
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O

Let H,, K; be measurable functions by which we mean they are Borel measurable
functions from (Ry x Q,F, ® B(R;) to (R,B(R)). Approximating them by elementary
functions leads to the following theorem:

Theorem 4.5.2 Let (M;) and (N) be two continuous local martingales. Let (H;) and
(K;) be measurable processes. Then fort < o

t t t
J|HSIIK5|d|<M,N>s<\/J |H8|2d<M,M>S\/J K, 2A(N, NYs, as.
0 0 0

The inequality states in particular that the left hand side is finite if the right hand side
is. If furthermore H € L'(d{M, M);) and K € L*(d{N, N)y),

t t
< \/J |HS|2d<M,M>S\/J | K|2d{N, N )s, a.s.
0 0

Proof Let (H,) and (K;) be from &, elementary processes. Let 0 =t; < --- < ty41 be a
partition such that on each sub-interval, both H,(w) and K,(w) are constant in s. WW
write, for Hy, Ko € Fo, H;, K; € F3,,

¢
JHSKS d{M, N )
0

N
Hy(w) = Ho(w)Lio(t) + Y Hi(w) L, 1,0 (0):

i=1

and N
Ky(w) = Ko(w)lyoy(t) + > Ki(w)1 g, 4,,41(8),
i=1

Then

fo H () Ko ()d M, N>S<w>\

w)(M, N)i(w

ZIH MK (W)[[CM, N (W)

\/Z\H i|2(M, M5 (w \/Zu( 2N, N3 (w)
= <J:O(Hs(w))2d<M, M>s(w)>é <L®(Ks(w))2d<N’ N>s(w)> :

Take appropriate limit to see the second inequality holds.

Let H, = H, sign(HsKs)%, we see that

t t
f HL| K| d(M, N, = f LK d(M, N,
0 0
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and apply the second inequality we see the first inequality holds for all bounded
measurable functions (H,) and (K;). If they are not bounded, we take a sequence
of cut off functions for Hs; and K, to see that first inequality always hold. They may
however be infinity. ]

Apply Holder Inequality to the above inequality to obtain the following.

Corollary 4.5.3 [Kunita-Watanabe Inequality] Fort < oo, and p > 1, 1% +==1,

1
q

t
E fo HL KA, N,

< (E(f 10100, g) % (E( ) K P, v.) g>$

4.6 Stochastic integration w.r.t. semi-martingales

A continuous semi-martingale is of the form X; = M; + A;, where M, is a continuous
local martingale and A; a continuous finite variation process. The decomposition
into the same is unique, up to a almost surely set. It is referred as the Doob-Meyer
decomposition of X;.

Definition 4.6.1 If X; = M, + A, is a continuous semi-martingale and f is a progres-
sively measurable locally bounded stochastic process, we define

t t 4
J fsts = f fdes + f fsdAs‘
0 0 0

Proposition 4.6.2 Let X,Y be continuous semi-martingales. Let f, g, K be locally bounded
and progressively measurable. Let a,b € R.

1. §{(afs +bgs)dXs = afy fsdXs + b gsdXs.

2. §; fsd(aX, +bYy) = afj fsdX, + b fsdYs.

Lt fsd (f grer> = f: fs9sdXs.

3.

4. For any stopping time T,

T 0 Q0
J Kq.dXs = J 1< Kod X = f KqdX].
0 0 0
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5. If X, is of bounded total variation on [0,t] so is the integral §, K,dX,; and if X, is a
local martingale so is § K dX,.

Also note that for continuous processes, Riemann sums corresponding to a se-
quence of partitions whose modulus goes to zero converges to the stochastic integral
in probability. Note that this convergence does not help with computation. Although
there are sub-sequences that converges a.s. we do not know which subsequence of
the partition would work and this subsequence would be likely to differ for different
integrands and different times.

Proposition 4.6.3 If (K:) is left continuous and A" : 0 = tf <t} < - <ty =tisa
sequence of partition of [0, t] such that their modulus goes to zero, then

t Nn
o stXs = gi—l?;loi:Zth?(Xt?Jrl — Xt;b),

The sum converges in probability.

4.7 1Ito’s formula

Consider an R"-valued stochastic process (X; = (X},..., X}'). Suppose that it is semi-
martingale and H; a process so that Sé H,dX, is defined. We set

t t s
J Hy,dX, =J HSdXs—f H,dX;.
s 0 0

We denote by (X, X); the matrix valued process whose entries are (X*, X7);.

Let B; = (B},..., B") be an m-dimensional Brownian motion. Let o} : R, xR" — R",
k =1,...,m, be vector fields on R?. We consider the stochastic differential equation
m
dxy = Z ak(t,xt)dBf + oo(t, z¢)dt. 4.1)
k=1

Proposition 4.7.1 (The product formula) If X; andY; are real valued semi-martingales,

t t
XYy = XoYo +f XsdYs +f YidXs +(X,Y )
0 0

This also provides an understanding, even serve as an definition, for the bracket
process,

t t
(X, Yy = XY, — XoYp — f X dY — f YadX,
0 0
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Example 4.7.2 If B, = (B?,...,B}) is an n-dimensional BM, then (B’ B7); = §;t,
|Bi|* = 3; | Bif*, and

no ot
|B|? = 2Zf BldB® + nt.
— Jo

Theorem 4.7.3 (Ité’s Formula) Let X; = (X}, ..., X]") be a R"-valued sample continu-
ous semi-martingale and f a C? real valued function on R" then for s < t,

F(Xe )+ ZJ 6:132 P + Z J 61‘16331 Xr )X, X7

In short hand,

t

F00) = £O0) + [ (DNEEX, + 5 [ (D2 (X)X X

S

Sketch proof: By the Taylor expansion for C? function f : R — R:

Y

F(8) = F(wo) + £/ (s0)(y — o) + f (v — 2)f"(2)dz

Yo
Y

= £(0) + ) = ) + 50y =0 + | (= 2"~ ()
Yo
The remainder term satisfies the bound

[ = 20) — o))zl < (v —90)> sup 1£(=) — £ (o)l

Yo 2€[yo,y]

Then It6’s formula follows from

N(n)—-1
FX) = F(X) = Y, (F(Xap,) = F(Xip)
=0
ZN( )_lf(XtZ‘)(Xt" _Xt") ;N(n)_lf”(Xt;L)<Xt" —Xt”>2
Z;(zn)fl ZIO
+ (R(Xt?+1 , Xt?)> .
i=0

It is easy to see that the remainder terms,

N(n)-1

Z sup

i=0 e[t ]

2
£(Xiy ) = ") | (X, = X )

converges to zero as the partition size is taken to zero.
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Remark 4.7.4 If T is a stopping time, apply Itd’s formula to Y; = X7 ,; to see that

SN 1 T At
F(Xra) = )+ [ (DPxdXod [ (0200, dX. 50,
0 0
Example 4.7.5 If B, = (B?,...,B}) is an n-dimensional BM, then (B’ , B7), = §;t,
B> = 3, |B|*. and

n ot
|B|? = QZLB;dB; +nt.
i=1

Example 4.7.6 Let ()M;) be a continuous semi-martingale. Then X; = eMe=5 (M, M),
satisfies the equation:

t
X; = Mo +J X dM,.
0

Let Y; := M; — 3{M, M), then (Y,Y); = (M, M), and X; = e}'. Let f(z) = ¢* and
apply Ito’s formula to the function f and the process (Y;),

t 1 t
X, = e¥t =0 +J eYdY, — 3 J eV d(Y,Y ),
0 0

t 1t 1
= Mo +f e dM, + 2f e d(M, M), — QJ e d(Y,Y )s
0 0 0

t
=eMo 4 f X, dM,.
0

My— (M, M),

Definition 4.7.7 If (M) is a continuous local martingale, e is a continuous

local martingale and is called the exponential martingale of M.

Theorem 4.7.8 Let (X;) be a continuous semi-martingale. Assume that %F(t, x) and
#&F(t,x), i,j =1,...,d, exist and are continuous functions. Then
t

F(t,X;) =F(0,Xp) + J

oF t
— (s, Xs)ds + f DF(s, Xs)dXs
0 0s 0

1 t
+ 2J DQF(5>Xs)d<XSaXs>'
0

4.8 Stochastic Differential Equations

Let us fix a filtered probability space (2, F, F;, P). Let B, = (B},..., B/*) be an standard
Fi-Brownian motion on R” (with By = 0). Let 0;,00 : R; x R — R? be locally bounded
Borel measurable functions.
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Definition 4.8.1 An adapted continuous stochastic process (x;), with initial condi-
tion xg, is said to be a (strong) solution to

dry = Z oi(t,x¢)dB] + oo(t, ) dt, (4.2)
i—1

if for any ¢ > 0, the following makes sense and holds almost surely

m t t
x = x0 + Z f o (s, z5)dBk —i—J oo(s,xs)ds.
k=170 B

We allow solution (z;) to be defined up to a life time ¢ < 7(x). A solution is defined
up to time 7, if for all stopping times 7' < 7, the following makes sense and holds
almost surely

m T T
rr = x0 + Z f op(s, zs)dBY +f b(s,xs)ds.
k=170 0
Remark 4.8.2 This concept of a local solution can be incorporated into the above
definition by introducing the one point compactification, R? U {A}, of R%, where A is
an alien state. The compactification is a topological space with the open sets to consist

of open sets of R? and sets of the form (R¥\ k) U{A} where K denotes a compact subset
of R%. Given a process (X;,t < 7) on R? we define a process (X;,¢ > 0) on R? U {A}:

A ) X (w), ift <7(w)
Xe(w) = { A, if t > 7(w). }

If (X;,t < 7) is a continuous process on R?, then (X;) is a continuous process on
R? U A. Define W(R?Y) = C([0,T];R? U A) whose elements satisfy that: if Y; = A then
Yi(w) = A for all t > s. The last condition means that once a process enters A, it does
not return.

Definition 4.8.3 The SDE is said to have no explosion, if for any initial condition,
there exists a solution defined a.s. for all time ¢. Otherwise it explodes in finite time
with positive probability.

Definition 4.8.4 The SDE is said to be pathwise unique, if for any two solutions (X;)
and (Y;) with the same initial condition X, = Y} a.s., then X; = Y; a.s. for all time ¢.
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4.9 Basic existence and uniqueness theorem

Theorem 4.9.1 Suppose that o;,b : R? — R? are Lipschitz continuous. Then for each
zo € R? there exists a unique continuous F-adapted stochastic process such that

m t t
= x0 + 2 J oy (zs)dBk +f b(xs)ds
k=10 0

Jor allt a.s. Furthermore for each t, x; is F?-measurable.

Proof Fix T > 1. Define, for all ¢ € [0, 77,

or(x")dBF + f (" dr. (4.3)

We note that,

E sup |xt — 20|> < 2Esup

Z f k(o) B; 2

+ 2uE|b(x0)|?

t<u t<u k=1
2
<2m 2 E|ok(z0) B (o)
m ~
2 1+ |zol)*E(B)? + 2uC?(1 + |zo|*)

= (2™mu + 2u)(C) (1 + |zo|)? = Cy,

where C is the common linear growth constants for o, and b. By induction and
analogous estimation, E sup,,, |x§") |2 is finite and the stochastic integrals make sense.
By construction each (x§">) is sample continuous and is adapted to the filtration of
(By).

We estimate the differences between iterations:

Esup |z"+D — 22
s<t
m S s 2
=Esup| ), f (Uk(wﬁ”’) —J(wﬁ”‘”)dBf + f (b(:cS")) - b(:nﬁ”‘”)dr :
5St =1 Y0 0
m s 2 s 5
< 2Esup Z f (Uk($£n)) — gk(xgn—1)>dB,’f + 2E sup f (b(x£n)) _ b(ﬂCﬁ”‘”))dr
s<t E—1 0 s<t 0
- s 2 S 2
<om Z E sup J <ak(xgn)) _ gk(xgn—U)dBf + 2E sup j (b(l.gn)) _ b($£n_1)))dr
k=1 sst 1J0 s<t |Jo
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Let K be the common Lipschitz constant for o5 and . By Lemma ??,

E sup ‘x(n-&-l gn) ‘2
s<t
m t 2 t 2
<20 Y] EU ‘ak(xgm) - ak(:,:g"*l))’ dr) + QTEJ ’b(a;@) - b(x&”*l))‘ dr.
k=1 0
m t
<2mCZK2JEx£")— ‘dr+2TK2JIE‘ () _ gn- ‘dr
k=1 0
Let
D =2"CmK? + 2TK?,
Then
Esup |z("T1) — ()2 <DJ (n— 1’ dr
s<t
2
DJ Esup |z xﬁ”_l)’ dsy
r<s1

2
(” N _ :1:,(“"72)’ dsoadsy

i
<D2f f Esup |z
r<S2
Sn—1
f f f Esup |z
r<sn

D”T”
n!

2
arg,o)‘ dsy, ...dsadsy.

By induction we see that

E sup ‘$(n+1 gn) ’2 4
s<t

whee C1 = TEsup,r |x§1) — x9|? < TCy. By Minkowski inequality,

2 1
J <Z sup [z — A’”\) <) (Esup |k +1) gk)]2>2 < .

1 st k=1 s<t

By Fatou’s lemma,

[s) 1
Z (]E sup [z#+1) — 20 2) 2

s<t

k=1
o0 % O DETE
<)) (]E sup |z(F+1) — gk”) <C1 )| — < 0.
k=1 sst k=1 k!

In particular for almost surely all w,

Z sup |z (w) — 2 (W)| < .
k=1 5SU
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For such w, {z{"”(w)} is a Cauchy sequence in C([0,t];RY). Let z;(w) = lim,_op 2" (w).
The process is continuous in time by the uniform convergence.

We take n — o in

m t t
mgn) =x9 + Z f or(z)dBF + f b(z" V) dr.
k=10 0
As n — o, Sg op(z)dBF — SS o(zs)dBs in probability. There will be an almost sure
convergent subsequence and this proves that

m t t
Ty = xo + Z f o(zs)dB* +J b(xs)ds.
k=170 0

Since each (xi")) is a adapted to the filtration of (B;), so is its limit.

(2) Uniqueness. Let (z;) and (y;) be two solutions with zy = yy a.s. Let C* be a
constant.
Esup |‘Ts - ys|2

s<t
2

= Esup

s<t

kil Ls (%(M) - a(yr))dBf + LS (b(xr) — b(yr)>d7-
JS (Uk(ZET) - o*k;(yr))dBf LS (b(xr) - b(%))dr

)2 +2F (i sup

k=1 St

0
m t t

<27mC* ) E(J ok () — Uk(yr)!2d7“> + 2TEJ [b(r) = b(y,)[Pdr
k=1 0 0

+ )
| (btn) = btw)ar

0

< Esup (i
k=1

s<t

m 2
< 2™ Z E(sup )
k=1

s<t

JS (Uk(xr) - Uk(yr))dBf

0

m t t
<2mC* ) KQJ E|x, — y,|*dr + 2TK2J E|z, — y,|*dr
k=1 0 0

t
< (2™mC*K2T + 2TK?) J E(sup |z, — yr|2> ds,
0 r<s
By Grownall’s inequality,
Esup |z, — ys|> = 0.

s<t
In particular, sup,, |z, — ys|* = 0 almost surely. O
Lemma 4.9.2 (Grownall’s Inequality/Gronwall’s Lemma) Let T > 0. Suppose that

f:10,T] = Ry is a locally bounded Borel function such that there are two real numbers
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C and K such that for all0 < t,

t
f) <0+ Kf £(s)ds.
0
Then
ft)y<celft, t<T
In particular if C =0, f(t) =0 forallt <T.
Definition 4.9.3 A solution (z4,t < 7) of an SDE is a maximal solution if (y;,t < 7)

is any other solution on the same probability space with the same driving noise and
with zg = yo a.s., then 7 > 7 a.s.. We say that 7 is the explosion time or the life time of

(.Z't).
By localisation, or cut off the functions o} we have the following theorem:

Theorem 4.9.4 Suppose that fork =1,...,m, o, : R? - R? and b : R — R? are locally
Lipschitz continuous , i.e. for each N € N, there exists a number Ky such that for all z,y
with |z| < N,|y| < N,

lok(2) —or(y)l < Knle —yl,  |b(x) = b(y)| < Knlz -yl

Then there is a maximal solution (xy,t < 7). If (x4,t < 7) and (y,t < () be two maximal
solutions with the same initial value = € R, then 7 = ¢ a.s. and (z;) and (y;) are
indistinguishable.

Example 4.9.5 Consider i(t) = az(t) on R where a € R. Let zo € R. Then z(t) = zge®
is a solution with initial value zq. It is defined for all ¢ > 0.

Let o (z0) = zoe®. Then (t,z) — ¢;(z) is continuous and ;4 s(70) = wi(ps()).

Example 4.9.6 Linear Equation. let a,b € R. Let d = m = 1. Then

o aBtfﬁtert
x(t) = zpe 2

solves
dxy = axydB; + bxydt, x(0) = xg.
The solution exists for all time.

Is this solution unique? The answer is yes. Let y; be a solution starting from the
same point, we could compute and prove that E|z; — i[> = 0 for all ¢, which implies
that z; = y; a.s. for all ¢.
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Example 4.9.7 Consider a particle of mass 1, subject to a force which is proportional
to its own speed, is subject to v, = —kv;. Its random perturbation equation is the
Langevin equation:

dvi(w) = —kvy(w)dt + dB(w).

For each realisation of the noise (that means for each w), the solution is an Ornstein-
Uhlenbeck process,

t
vy (w) = voe M + f e F AR, (w).
0
Apply Ito’s formula to e **z; we obtain:

t ¢
elay = xo + f ke*Szds + J M drg
0 0

t
=120+ J e*dBs;.
0

Multiply both sides by e~** to conclude.

Example 4.9.8 (1) Small Perturbation. Let ¢ > 0 be a small number,
t
xp = x0 + f b(xf)ds + €Bs.
0
As ¢ — 0, zf — z;. (Exercise)

(2) Let yy = yo + € Sé b(yS)ds + 4/eW;. Assume that b are bounded, as ¢ — 0, yf on any
finite time interval converges uniformly in time on any finite time interval [0, ¢],

Esupossst(yg — o) — 0.

It is worth noticing that Itd’s formula and Itg’s isometry work with stopping times.
Ito isometry may fail for random non-stopping times.

Example 4.9.9 Let 7' =inf{t > 0: sup,_,, |Bs| > 1}.

_{ 0 SUPj<st | Bs| < 1
S = 1 1
T, T < 1.

Then Bg = 1 if 7' <1 and Bg = By = 0 otherwise. Then

S
E(f dBs) = E(Bgliigyy =P(r' < 1) #0.
0
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4.10 Stratonovich integral

Let A:0 =1t <t < -+ <ty =t be a sequence of partition of [0,¢] and denote:
|A| = max; |t;+1 — t;|. We have seen that

| feram. = 1im S re) (51, — B,

|A|—0 <=
i

where the limit is taken in probability.

On the other hand, if f and ¢ are continuous and ¢ is a function of finite total
variation, then the Riemann-Stieljes integral is defined by

jo F(5)dgs = 1im S £(5%) (g5, — 95,)

where the limit is independent of the choices of s; € [sj,s;11]. In general, an integral
Sf) fsdgs can be defined as a continuous map from C* x Cc? - C7 if and onlyifa+ 5> 1.
Consequently, Sé f(s)dBs is not in general an almost sure limit. The choice of the
evaluation point for the integrand is also relevant. The sum
1 1
Z §(f<ti+1 + f(ti))(BtiH - Bti) = Z f(ti)(Bti+l - Bti) + §Z(f(ti+1 - f(ti))(BtiH - Bti)’

the first sum converges to the Ito integral, while the second to the bracket 1(f, B);.

Definition 4.10.1 Let (x;) be continuous semi-martingale and (y;) a stochastic pro-
cess such that the integral below makes sense. The Stratonovich integral is defined
as:

t t
1
f Tsodrs := f ysdxs + 7<x,y>t~
0 0 2

Note that if =, y; be real valued semi-martingales, f : R — R be C?, then

(F) e = j £ () Gy, 23s.

Particular interesting is the case where z; = B; be a Brownian motion, and y; a solu-
tion to
dy. = Y (y1)dBy + Yo(ye)dt.

Then, t
(), B = L F(ys)Y (5s)ds.
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Lemma 4.10.2 Let B, = (B},..., B™) be a m-dimensional Brownian motion. There is
the following It6’s _formula for solution of the equation

dry = . Xj(wy) 0 dB] + Xo(wy)dt.
j=1

Let f : R? - R be any C? function, and X j € C? and X, Lipschitz continuous such that
there is a global solution. Then,

t t
f(xy) = fxo) + JO Df(zs)(X(xs)dBs) + JO Lf(xs)ds (4.4)

where ]
Lf(@) = 5 ) XiXif + Xof

and X (z)dB; is shorthand for };; Xj(ars)dBZ.
For solutions of the It6 integral
dry = Y Xj(x¢) 0 dB] + Xo(w)dt,
j=1

holds with

where a; ;(z) = Y0, X (2) X} (2).

4.11 weak solution, explosion, and uniqueness*
Definition 4.11.1 A d-dimensional stochastic process (z;,t < 7), where 7 < 0, on a
probability space (2, G, P) is a (weak) solution to the SDE (of Markovian type)

dry = U(t, $t>dBt + b(t, .’Et)dt. (4.5)

If there exists a filtration (F;) such that

(1) x; is adapted to F;,
(2) a F; Brownian motion B; = (B},..., B") with By = 0;

(3) for all stopping times 7' < 7, the following makes sense and holds almost surely

m T T
xr = xo + Z f o (s, z,)dBY + f b(s,zs)ds.
k=10 0



4.11. WEAK SOLUTION, EXPLOSION, AND UNIQUENESS* 87

We may replace (3) by (3’)

(3) an adapted continuous stochastic process z. in C([0,%0);R? U {A}), s.t. for all
t=0,

mo ot t
= x0 + Z J o (s, zs)dBY + f b(s,zs)ds,a.s.
k=10 0

In essence the SDE holds on {t < 7(w)}. The maximal time 7, up to which a solution
is defined is the explosion time, the solution (z;,¢ < 7) is the maximal solution.

Definition 4.11.2 A solution is a global solution is its life time infinite. We say that
the SDE does not explode from =z if its solution from z( is global. We say that the
SDE does not explode if all of its solutions are global.

Definition 4.11.3 A solution (z, B;) on (2, F, F;, P) is said to be a strong solution, if
x¢ is adapted to the filtration of B; for each t. By a weak solution we mean one which
is not strong.

Definition 4.11.4 If, whenever (z;) and (#;) are two solutions with zy = 7y almost
surely, the probability distribution of {z; : ¢ > 0} is the same as the probability distri-
bution of {Z;,t > 0}, we say that uniqueness in law holds.

Uniqueness in law implies the following stronger conclusion: whenever z, and z, have
the same distribution, the corresponding solutions have the same law.

Definition 4.11.5 We say pathwise uniqueness of solution holds for an SDE, If when-
ever (z;) and (#;) are two solutions for the SDE on the same probability space (2, F, F;, P)
with the same driving Brownian motion (B;) and same initial data ( 2y = Z( a.s.), then
xy = I for all ¢t > 0 almost surely.

Before giving an example, we state Lévy’s martingale characterization Theorem.
In dimension 1, it is as follows. An F; adapted continuous real valued stochastic
process B; vanishing at 0 is a standard F;-Brownian motion if and only if (B;) is an
Fi-martingale with quadratic variation t.

Theorem 4.11.6 Let T be a finite stopping time. Then (Br,s — Br, s > 0) is a Brownian
motion.

Definition 4.11.7 An n dimensional stochastic process (X},...,X}) is a F; local-
martingale if each component is a F; local-martingale.
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Theorem 4.11.8 [Lévy’s Martingale Characterization Theorem/ An (F;) adapted sam-
ple continuous stochastic process (B;) in R? vanishing at 0 is a (F;)-Brownian motion if
and only if each (By) is a (F;) local martingale and (B*, By, = §; jt.

Theorem 4.11.9 (Dambis, Dubins-Schwartz) Let F; be a right continuous filtration.
Let (M;) be a continuous local martingale vanishing at 0 such that (M, M )., = c. Define

T, = inf{s : (M, M )5 > t}.

Then My, is an Fr, Brownian motion and M; = By, Q.S..

The condition on the bracket assures that the time change 7; is almost surely finite
for all t. Apply Lévy’s Characterization Theorem, Theorem ??, for Brownian motions.

Example 4.11.10 (Tanaka’s SDE) Let

) -1, ifz<0
sien(@) =1 o

and consider the following Tanaka’s SDE, defined on R,
dxy = sign(x;)dBy.

If (z;) is a solution of Tanaka’s SDE with initial zy, then z; — z¢ = SS sgn(zs)dBs is a
Brownian motion, by Lévy Characterisation Theorem. The distribution of (zs,s < t)
is the Wiener measure on C,,([0,t]; R?), the space of continuous functions with initial
value xg. So uniqueness in law holds.

If (z;) solves Tanaka’s equation z; = SS xsdBs (initial value 0), then so does (—xj).
Pathewise uniquness fails.

We construct a solution. In fact, let (W;) be a Brownian motion on any probability
space with By = 0 and let xg € RY, we claim that x + W, solves Tanaka’s equation driven
by a Brownian motion B which we specify below. Define

t
B, = J sign(z + Wy) dWs.
0

This is a local martingale with quadratic variation ¢ and hence a Brownian motion.

Furthermore .

¢
J sign(xz + Wy)dBs = J dWs = W.
0 0

Thus "

r+Wy=z+ J sign(x + Wy)dBs,
0

as claimed. Taking = = 0, it is clear that B, = Sé sign(Ws) dWs contains less information
than W;.
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Example 4.11.11 ODE i; = (z;)%dt, o < 1, which has two solutions from zero: the
1 1
trivial solution 0 and z; = (1 — o)== ¢7-=. Both uniqueness fails.

Example 4.11.12 Dimension d = 1. Consider dx; = o(x;)dW;. Suppose that o is
Hoélder continuous of order «, |o(z)—o(y)| < c|lz—y|* for all z,y. If o > 1/2 then pathwise
uniqueness holds for dz; = o(x;)dW;. If & < 1/2 uniqueness no longer holds. For o >
1/2 this goes back to Skorohod (62-65) and Tanaka(64). The « = 1/2 case is credited to
Yamada-Watanabe, and referred as the square root problem in mathematical finance
modelling.

4.11.1 The Yamada-Watanabe Theorem

The following beautiful, and somewhat surprising, theorem of Yamada and Watanabe,
states that the existence of a weak solution for any initial distribution together with
pathwise uniqueness implies the existence of a unique strong solution.

Proposition 4.11.13 If pathwise uniqueness holds then any solution is a strong solu-
tion and uniqueness in law holds.

For the precise meaning of ‘universally measurable’ see P163 of Ikeda-Watanabe’s
book [8].

Theorem 4.11.14 (The Yamada-Watanabe Theorem) If for each initial probability dis-
tribution there is a weak solution to the SDE and suppose that pathwise uniqueness
holds then there exists a unique strong solution. By this we meant that there is a pro-
gressively measurable map: F : R? x wgt — W4, where the o-algebras are ‘universally
complete’, such that

1. for any probability measure ;. on R? there exists I that is measurable w.r.t. B(R? x
WP s.t. F(z,w) = F(z,w) a.s.. If& € Fy we set F(&, B) = F(&, B).

2. For any BM (B;) on a probability space (2, F, F;, P), and any & € Fy, x; = Ft(&b By)
is a solution to the SDE with driving noise (B;) and initial value &.

3. If x4 is a solution to the equation with driving noise (B;), then x; = F;(zy, B) a.s.
In another word, for any By, and z, € R?, Fi(xo, B) is a solution with the driving

noise B;. If xz; is a solution on a filtered probability space with driving noise B;, then
Ty = Ft((IZ,B) a.s.

We do not prove this theorem, but refer to Ikeda-Watanabe and Revuz-Yor. The
following observation is important for the proof of the Yamada-Watanabe Theorem.
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Given two solutions on two probability space we could build them on the same prob-
ability space: W% x W x W™,

Lemma 4.11.15 Let f,g be locally bounded predictable processes (measurable with
respect to the filtration generated by left continuous processes), and B,W continuous
semi-martingales. If (f, B) = (g, W) in distribution then

¢ ¢
law
(1B, | £dB) " (0. W. | g,
i.e. they have the same probability distribution.

See exercise 5.16 Revuz-Yor.

Theorem 4.11.16 Let (M,) be a continuous local martingale. The exponential martin-
gale N, := M=3MM s q martingale if and only if E(N,) = 1 _for all .

Proof If (IV;) is a martingale, the statement that its expectation is constant in ¢
follows from the definition. We prove the converse. Since (V) is a continuous local
martingale, it is a super-martingale. Indeed for a reducing sequence of stopping times
T,, and any pair of real numbers 0 < s < ¢, we apply Fatou’s lemma:

E(Nt‘fs> < lim E(NtTnLFS) = lim NSTT — Ns‘
n—on n—00

Let T be a stopping time bounded by a positive number K. By the optional stopping
theorem,
E(Nr) 2 E(Nk) =1,  E(Nr) <E(No) =1.

Thus E(N7) = 1 and (/V;) is a martingale. ]
This can be generalized to stochastic processes that is not positive valued. Let
(M;) be a continuous local martingale with E|My| < o. Suppose that the family

{M},T bounded stopping times } is uniformly integrable. Then (M) is a super mar-
tingale. It is a martingale if and only if EM; = EM), see Prop. 2.2 in [?]

4.12 Cocycle property and Markov property

Suppose that the SDE

dry = Y Xj(t,x4) o dB] + Xo(t, m)dt,
j=1
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has a unique strong solution and the SDE is complete (i..e from each initial point
the solution exists for all time). We denote by ¢;(z) the function given by the Yamada-
Watanabe theorem, which is the solution to the SDE with initial z, and it is continuous
in time and adapted. Furthermore, if 7 is independent of 7} = o(W, — W, : r > s),
denote by ¢, :(n) the solution to:

t t
Ty =1n+ ZJ Xz, )dWE +J Xy (zp)dr, t=s.
k S S

The solution theory for ¢;(z) remains to hold. We note ¢g.(z) = ¢o(z). Then the
solutions of the SDE is a, time in-homogeneous, Markov process if uniqueness of
solutions holds. Its transition probability is given by

Ps,t(xv A) = P(Sos,t(qj) € A)
We shall focus on the time homogeneous case.

Theorem 4.12.1 Assume that pathwise uniqueness holds and the SDE

dry = Y Xj(x¢) 0 dB] + Xo(w)dt,
j=1

is complete. Then, the following cocycle property holds for any x € R":
Pst(ps(a,w),w) = por(z,w),  Vs<it,
almost surely. Furthermore,
Ps,1(2,w) = @o,1—s(ps(, W), hsw).

Consequently, the solution is a (time homogenesoud) Markov process with transition
probability
Pt(x7 A) = P(@S,S-&-t(wi))‘

Proof , )
pi(x) = ps(z) + ZJ X (2, )dWF + J X, (z,)dr.
k Vs s

By parhwise uniqueness, ¢;:(ps(z,w),w) = ¢o+(x,w). Let n be independent of 77,
consider the equation:

t t
Ty =1n+ ZJ X (z,)dWE +J Xy (zy)dr.
k S S
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Define W, = 6, W (r) = W, , — W,. Then, by a change of variable,

t—s

Ty =mn+ ZJ Xi(Turs) de—i—s X (2yys)du.
0

which means

t—s

Tst(t—s) =N+ ZJ Xk :L‘qus dﬁ/q]f + . Xr($u+3)du,

consequently by pathwise uniqueness: ;. (z,w) = @o1—s(n, Osw). Set Pi(z, A) = P(p(z) €
A), then by the cocycle property,

P(@s-i—t(x) € A‘FS) = P(@O,t(x&gsw) € A’fs) = Pt((ﬁs<$)7‘4)7

almost surely, proving that the solution is a time homogoneous Markov process with
transition probabilities P;(z, -). ]

4.13 The Markov semi-group

We continue to study the SDE dz; = 77", X; (z¢)dB] + Xo(x;)dt, under the assumption
of completeness and pathwise uniqueness. Let F = o{(W, — Wy : s < r < t} and
@s¢(—) the solution flow with initial time s. Recall that P;(z,A) = E(¢i(z) € A) and
P(psit(x) € A|Fs) = Pi(ps(x), A). Define the semi-group :

T,f(a Jf Py, dy).

Lemma 4.13.1 Let n be a random variable on R?, independent of F{. Suppose that
pathwise uniqueess and non-explosion holds. Let z; := ¢, (1) denote the solution flow
¢s.s(n) = n. Then for any function f € C?, we have

t

o) = F0) + [ i) X aw) + | £5(o)ar

S

where for a; j(z) = ", Xi(z )X;JC(ZU)’

5,j=1

Lf(@) = i (@ 6xzx] Z bl 0xl

N |

If f € BC? and if X, where k = 0,1, ..., m, are locally Lipschitz continuous and grow at
most linearly, then

Tif(x) — f(z) = Jo T Lf(x)dr, (4.6)
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Proof The formula for f(z;) follows from It6’s formula. If }" ,|X;| grows at most
linearly and sup, ., E(|¢s,|?) < o (this is the case if all the vector fields X; are locally
Lipschitz continuous and grow at most linearly), then for any f € BC?, we have

t

E[f(z:)] = E[f(n)] + f ELf()dr.

Taking n = z, leading to
t
Tif(@) = f(o) + | TLT@)dr
0

as claimed. ]

4.14 Strongly continuous semi-group on C,

We now want to show that £ is the generator of 7; and to determine the domain of £. If
s — T, f as a continuous map on a subspace F of bounded measurable functions (i.e.
T, is strongly continuous), then fundamental theorem of Calculus allows to conclude
that lim,_,¢ %(Tt f—f) — Lf in the supremum norm. Note that the heat semi-group is
not strongly continuous on bounded measurable function, it is however continuous
on C'%2, smooth function with compact support.

4.14.1 Strongly continuous semi-group on a Banach space

An unbounded linear operator on a Banach space E is never defined on the whole
space. It is useful to know the domain of the generator, which is however often tricky
to identify. The domain can be thought of as ‘smooth’ functions. The semigroup 7; is
thought of to smooth out a function, or at least not to rough it, for ¢ > 0. Similarly,
integration S(t) is a smoothing operation. The integral S(t) Tszds is defined by Riemann
sum on E.

Theorem 4.14.1 LetT, : E — E be a strongly continuous semigroup on a Banach space
E. Let (£,D(L)) denote its generator. Then the following hold:

1. Ifre E andt > 0, then

t
f Tsxds e D(L)
0

¢
Tix —x =£<J TS.I‘dS).
0

and
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2. Ifr e D(L), then Tyx € D(L) for any t > 0 and

d
%Ttx =T Lx = L(Tix).

3. D(L) is dense in E and L is closed.

Proof (i) We have

1 t t
- (Thf Tixds — J Tsx ds)
h 0 0

S= S

t+h t
(J Texds — f Tsx ds)
h 0

t+h 1 h
J Tsxds—f Tirxds — Tix — x
¢ h Jo

as h \, 0 since t — T;x is continuous.
(i) If x € D(£) and ¢ > 0, then

T Tix — T, Thx —
hdltX tx:Tt hT

X
h g Tk

by continuity of 7;. Hence, Tix € D(L) and LTz = T;Lx. Moreover,

Tiynr — Tix

h = Tt£$ = ,CTt{E

d .
gt [ = lim

(iii) Since %Sé Tsxzds € D(L) for each x € F and ¢t > 0 and

h

1
r=1m- | Tszds,
h—0 h Jg

we see that z € D(£).
Finally we show that £ is closed. Let (z,) < D(£), z, — =, and suppose that
Lz, — y. Then, by (ii),

¢
Tixy, — xp = f T Lx,ds.
0

Taking n — oo, we see that iz —x = Sé Tsyds and % — y. Thus, z € D(£) and Lz = y.
Consequently, £ is closed. ]
4.14.2 Strongly continuous semigroup arising from SDEs

Definition 4.14.2 A Markov-semigroup 7; is said to have the Cjy-property if when it
take Cy(X) — Cy(X). Equivalently, T; : Co(X) — Co(X) is strongly continuous.
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Note that one way to show the Cj property is to show that lim,_,,, ¢:(z) = 0 where
¢t(z) denotes the solution flow to the SDE. Observe also that

1 1

B V@1

> M) < ),

e ()2 + 1

which converges to zero, as * — oo, under the linear growth and locally Lipschitz
continuous condition.

To show T;Cy < C it is equivalent to showing that lim,_,,, P;(z, K) = 0.

Lemma 4.14.3 Let T; be a Markov semigroup and x; a time homogeneous Markov pro-
cess such that T f(x) = E[f(x1+s)|Fs). Then T; restricts to Cyo(X) if and only if for any
compact set K,

lim P(X; e K) = 0.

Tr—00

Proof Let f € Cy and K be a compact set. Then

Ty (2)| < [E[E(f (2)]xo = 2)La,er)]| + [E(f (20) w0 = 2)1aigr) < [ flooP(2: € K) + sup /()]
For any ¢ > 0 there exists K. such that outside of which |f| < ¢/2. Thus, taking
lim, ,, P(X; € K) =0, O

Example 4.14.4 The heat semi-group is a strongly continuous semi-group on Cy. We
first take f e C2. Since T;f(x) = Ef(z + B;) and

1 t t
flz+ By) = f(x) + J Af(xg)ds + J df (x + Bs)dBs.
2Jo 0

Taking expectation we obtain

1 t
Tif(@) = £(0) + 5 | Tp'@)ds,
0
Suppose f has compact support K, Tsf” converges uniformly on K. Hence T; is
a strongly continuous on C%, which is a dense subset of Cy. Since |T;| < 1, the
conclusion holds.

Proposition 4.14.5 Suppose that the vector fields are locally Lipschitz continuous and
grow at most linearly, and suppose that its corresponding Markov-semigroup has the
Co-property. Let L denotes the Markov generator of T;. Then any f € C% is in the domain
of L and
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Furthermore, 1T} f solves backward Kolmogorov equation.

E = EUt, U(O, ) = f

Proof The SDE is conservative and the solutions have finite p-th moments, bounded
uniformly in

Suppose that 7; has the Cy-property, Under the conditions on X;, Lf € Cy, t —
Ti(Lf) is continuous. Apply the fundamental theorem of calculus to the following
identity on Cy:

t
T.f = f+J T Lfdr,
0
to see that Lf is indeed the derivative of T;f at t = 0. Consequently C% is in the

domain of the generator. Furthermore, if £ is the generator of a semi-group 73, and if
feD(L), then Tsf € D(L) by Theorem [4.14.1|and w; := T} f solves the Cauchy problem

du

E = [;Ut, ’LL(O, ) = f

This completes the proof. O

Example 4.14.6 Let T, f(x) = Ef(x + B;), where B; is an n dimensional Brownian
motion. Then for f e C?,

2
[yl

T, (x) = ﬂl_mn f fla+y)e S dy = ﬂl_ﬂn f f(x+ Vig)e

Taylor expand around x gives, for some s € [0, 1],

=
L[S
¥

fiflo) =) = \/21?” f\/i<Vf(x),y> - %<V2f($ + S\/iy)y,we’%dy

Using the mean zero property, for f e C%,

th(fv)tf(fﬁ ff

Exercise 4.14.7 Check that 7; preserves the space Cy(R").

<V2 (x + S\/y)y,y>e dy — trV2f($) = %Af(:c)

Definition 4.14.8 The L?-adjoint of £, denote by L*, is a linear operator defined as
follows. g € £? is in the domain of £* if

J Efgdx—f fL*gdx
R R

holds for any f € Dom(L).
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We observe that for the generator of the SDE,
0?f

£ (@) = — div(bs) + 5 Yy L
J

7.7

where
div(bf) = fdivb + (b, V).

Suppose that the probability measure of x; is absolutely continuous with respect
to the Lebesgue measure. We write:

Pi(x + 0,dz) = pi(zo, z)dz.

By (4.6).

[ romtan.nte = sta) = [ [ 2itmtan. v
We therefore expect that p, solves the Fokker-Planck equation (Kolmogorov’s forward
equation):

apt(SUQ, ':C)

(% = ﬁ*pt(x(),flf), pO(x07 ) = 5&‘0‘ (47)

4.14.3 Strong complete, Feller Property, and Strong Markov property

Definition 4.14.9 An SDE is strongly complete if for every initial point there exists a
version of the solution which we denote by ¢,(z,w) satisfying the following property:
for almost surely all w,

(t,z) — @iz, w)

is continuous from R, x R? — R%

If X; are Lipschitz continuous, strong completeness holds. The following equation has
a global solution from any initial point.

dry = (y? — 22) dW} + 2y, W2, (4.8)
dyr = —2xyyy AW, + (2} — y7) dW7,

where (W}, W?) is a Brownian motion on R?. It is not strong complete

Proposition 4.14.10 If X; are Lipschitz continuous, then the SDE is strongly complete.

Lemma 4.14.11 [f strong completeness holds ( indeed we only need to assume that
x — ¢i(z,w) is continuous in probability for every t), Feller property holds for T;. Conse-
quently, the solutions are strong Markov processes.

The Feller property follows from the dominated convergence theorem.
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4.15 Martingale Considerations

The following theorems show that the generator of a strongly continuous semigroup
determines it.

Theorem 4.15.1 Let T; and S; be strongly continuous semigroups of bounded linear
operators with the same generator, then Ty = S; for allt > 0.

Proof Let us denote the generator by L. Since D(L) is dense, and 73, S; are continuous
linear operators, it is sufficient to show that 7; = S; on D(L). Note that Sy = Ty. Take
z in the domain, then, for each r > 0, S,z, T,z € D(£). Hence,

d

£St75TS.%' = —EStfs(TSZL) + St,s(L'Tsx) = 0.
In the last line, we used part (ii) of theorem [4.14.1| to commute L and its generator.
This means that s — S;_Tsx is a constant, concluding the proof. O

With stochastic differential equations of Markovian type, on a manifold without a
boundary, it is easy to extract the formal generator, we hope knowing the generator
on C¥% is sufficient to identify the transition functions. Then if the martingale problem
is well posed we are in good business.

Before closing this section, note that it is remarkable that a strongly continuous
semi-group on F is automatically differentiable on a dense set of £ and on which z

solves the equation:

d

&Ttaz = LTz,
As we will see later it is often easy to identify the form of the generator for the semi-
group corresponds to a Markov process on the class C}%, the space of smooth func-
tions on the compact support, should the space has no boundary. Then for such

functions 7} f solves the Cauchy problem %u = u with u(0,-) = f.

Definition 4.15.2 The Markov uniqueness problem concerns whether there exists a
unique Markov process on the continuous path space over a complete Riemannian
manifold such that its Markov generator is the infinite dimensional Laplacian. This
remains unsolved for a general Riemannian manifold.

Example 4.15.3 (BM on R, Reflecting boundary) How do we keep a Brownian mo-
tion starting with « > 0 in [0,0)? One way is to reflect it back. The reflected Brownian
motion behaves like a Brownian motion while away from 0, at 0, it moves only to the
right. A Brownian motion on R with initial condition z reflected at 0 behaves like a
Brownian motion from z before hitting 0, at 0 it reflects immediately, so it spent 0 time
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on the boundary (Sé 140;(Xs)ds = 0.) A realisation of the reflected Brownian motion is:
x + Bt|
Exercise. Show that |z + B,| is a Markov process and the semi-group is: for z > 0,

1 © _ly—=/? _ly+al?
Tf(@) = o | Fe™ 5wy

Then, Lf = 3 f” with domain:
{f € Co(R): f € Co(Ry), f" € Co(R4), f/(0) = 0}.

Definition 4.15.4 If (X;) is a Markov process on X and 7; is a semigroup of bounded
linear operators on a closed subspace E c B,(X), where F is separable, s.t.

th(Xs) = E(f(Xt—i-s)’fS)v a.s. Vf € EI7
we say that X; corresponds to 7;.
Consequently, if y = £(Xp) is the initial distribution, E[T;f(Xo)] = §, T;.f(x)pu(dz).

The solution of an SDE with Lipschitz continuous coefficients corresponds to its semi-
group.

Proposition 4.15.5 [3, pp161] Let X be a separable metric space and let E c By(X)
be closed sub-space which is measure determining. Let (T;) be a semigroup of bounded
linear operators on E and (X;) be a Markov process on X, corresponding to T;, and
with initial distribution . Then Ty and i uniquely determine the finite dimensional
distributions of (X;).

Proof Lett > 0. Since for every f € E,

Emmﬂ=Lﬂmmmm=Lﬂmmmmn

and F is measure determining, the distribution of X; equals (7}).u. For the multi-
dimensional distributions we use that

L= {f(2) =0 fi(w) : fie EU {1}n > 1)

is separating on II?_, X', see Theorem We claim for any n > 1, f1,..., f, € F, and
0<ti < <ty,

B[ fi(Xe)]) = T (fi %o % Tyt Ja) (X2r) )

which means that the finite dimensional distribution of X; is determined. We prove
the above claim by induction. For n = 2, this is

]E(fl (Xt1 )f2 (th)) = E[(flTh*tl f2)(Xt1 )]a
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so the two point motion is determined. Assume this holds for £ < n — 1, we prove by
induction and by the Markov property. For ¢t} <its < --- < t,,

B[, fi(Xe)] = E(f1(Xe ) EALLy fi( Xy, )| Fy))
= E(fl(Xt1)<Ttrn (fz X e X Ttn—tn_lfn) (Xt1)>),
this concludes the proof. ]

Proposition 4.15.6 Let T; be a strongly continuous semigroup on a Banach space E c
B, (X) with generator L. Let (X;) be a Cadlag Markov process corresponding to T;. Then

for every f e D(L),
t
ME = 5(0%) = | £

is a martingale.

Proof Let s < t. The cadlag property of X, implies that » — L£f(X,) is measurable.
Note that f and Lf, both belongs to E c B,(&X'), are bounded, integrals are finite. It is
then trivial to see that

t
E(M] — M]|F,) = E[f(X:) — [(Xs) | F] EU Lf(X,)dr |f5}

t

= thsf(Xs) - f(Xs) - J Trfs*cf(Xs) dr

S

t
= T (X0) — F(X) — | ST f(X) dr =0,

In the last step we used the fact that, for a strongly continuous semigroup, LT;f =
T.Lf = %Ti f, for every f € D(L). This completes the proof. ]

The converse holds if £ = Cy(X).

Proposition 4.15.7 Let T, be a strongly continuous semigroup on Cy(X) with gener-
ator L. Suppose that (X,;) is a Cadlag Markov process corresponding to T, and with
deterministic initial condition x. Suppose that f,g € Co(X) and

t

N, = f(X0) fg o(X,)dr

is a martingale. Then f e D(£) and Lf = g.

Proof Note that g € Cy(X) is bounded. Again the regularity on X; implies that the
integral Sé g9(X,)dr is well defined. Since V; is a martingale,

E[f(X)] - EUt g(X»dr] — ENo = E[/(Xo)]

0
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Take X, = 0., then f(z) = §, f(y)d.(dy) = E[f(Xo)]. Since X; is a Markov process
corresponding to 7; with initial point z and since f is continuous,

Tif () = E[T;f(Xo)] = E[E[f(X:) | Xo]] = E[f(X¢)]-

ﬂmxwﬂ—1Uﬁmmm}

Since r — T, g is continuous on Cy, the right hand side converges to % Sé T.gdr — g and
Lf=g. ]

By Fubini’s theorem,

1

1
TG0 - 1) - 7|

4.15.1 Diffusion operator an and Martingale problem

Let X = (Xy,...,X,,) be the d x m-matrix with column vector given by the vector fields
X1,y X, set A = XXT. Writing A = (a;), denote Lf(z) = %szzl aij(a:)%(ﬂf) +

df (Xp). It is routine to require the solution, to the SDE ,to have continuous path or
has cadlag sample paths. In the former case, we would limit our solutions to the
space C(R,, ) of continuous paths, or to C(R,, X) where T' > 0. For any z, (a;;(z)) is
a non-negative symmetric matrix. Such an operator is referred as diffusion operator.

Definition 4.15.8 A continuous process z on R? or its probability distribution, de-
noted by P, where p = L£(Xy), is said to solve the local martingale problem for L,
if

Mtf = fxe) — f(zo) — L Lf(xy)dr

is a local martingale (for the natural filtration of ;) for every f € C%.

We do not have time to work with the martingale problem in great depth, will simply
go over the important results for stochastic differential equations on R".

Definition 4.15.9 The local martingale problem for £ is said to be unique if any two
solutions to the martingale problem, with the same initial distribution, have the same
probability law. It is said to be well posed if for any initial distribution there exists
exactly one solution.

The questions whether the martingale problem is well posed is a fundamental
question, which leads essentially to the strong Markov property. Being a martingale



4.15. MARTINGALE CONSIDERATIONS 102

is a property of finite dimensional distributions. Indeed Mtf is a martingale if and only
ifforany 0 <t <ty <--- <tyy1, and g; € By(&X), the following holds:

tn+1

B[ (w1, ~ fa) ~ | L G)dr) Egitan)| =0,

tn

For the proof of the next theorem we need the following (local) martingale repre-
sentation theorem:

Theorem 4.15.10 (Integral representation) Let ); be a continuous local martingale
with values in RY, vanishing at time zero, with quadratic variation

(M, M7y = kzlfo or.(s)oy.(s)ds

where o}, are progressively measurable stochastic processes. Then there exists a Brow-

nian motion W; such that
mo ot
M= J oLdWE.
k=10

Proof If m = d and if the matrix ¢ = (0y1,...,04) is invertible, we simply set W; =
Sf) o~ Y(s)dM,. Otherwise, we let T : R™ — R™ and I+ : R™ — R™ denote respectively
the orthogonal projection from R™ to its subspaces ker(s) and [ker(o)]+, the kernel of
o = (o1,...,0,) and its orthogonal kernel. Observe that the quadratic variation matrix
is(M,M) = Sé(a(s)aT(s))ds where ¢! denotes the transpose of . Let W; be a Brownian
motion on R", independent of M;, and set

t t
142 :J o(s)HItdM, +J L, dW,.
0 0

Then W; is a Brownian motion, as its quadratic variation is:
o (ool (e T + (M = Iyvg.

In addition,

m t t t t t
ZJ ol(s)dW? :—J o(s)dM, —J HldMs+f o(s)gd M, —f tdM, = M,.
k1 Y0 0 0 0 0

We have used that Sé o(s)IIEdW, = 0. O
Exercise 4.15.11 If M, is a martingale on R"” with quadratic variation Sé A(s)ds and

o : R™ — R% is a continuous and adapted process, show that N, := Sé o(s)dBs has
quadratic variation {{(cAc”)(s)ds. Hint: Work with individually entries (N?, N7),.,
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Theorem 4.15.12 Let X; be progressively measurable. Consider the canonical proba-
bility space C(R ,R?) endowed with a probability measure P. Then the SDE has a weak
solution with distribution P if and only if P solve the local martingale problem for L. In
particular, if x; solve the local martingale problem for L, there exists a Brownian motion
W; such that

¢ t
Xy = xo + f b(xs)ds + J X (zs)dWPE.
0 0

Proof The ‘only if part is trivial and follows from Itd’s formula.

If P solve the local martingale problem for £, then we take f! be a sequence of
smooth functions with compact supports such that f(z) = z; for z € B,, and f. — f.
By the assumption:

filan) — fi(xo) - fo Cf (za)ds

is a local martingale. Using stopping time and by the definition of local martingales

we see that :

MZ = mi — :Eé — j bi(xs)ds
0
is a local martingale — observe that £f = df(b). By a similar consideration applied to
gij(z) = 2’27 we see that

I B , t o
M; ;= zjx] — xywd — 5 Z L o (8)oq (z5)ds — Jo [21b"(xs) + xlb'(xs)]ds,
k=1

is a local martingale. We have used the fact that £(g;;) = 137", oiol + 27b' + 2'b/.
Furthermore,

<Mi, M]>t = <£L‘i, $J>t
On one hand, by Itd’s formula:

. . . t . - t . . . .
Tyx] = TOTh + f xydxl + f ldxy + (z', 2’ )
0 0
- t . - t . . . . t . . - .
= o) + L xredM] + L xldM + (x*,a” ) + L (23 (xs) + b (z5))ds.
Consequently,

t . t . 4 . 13t ,
M;; = J xLdM! +J xddMy + (M, M7y — 5 Z J 0 (8)o7 (zs)ds.
0 0 = o

Since M;; and the first two terms on the right hand side are martingales, by the
uniqueness of semi-martingale decomposition, it is necessary that

i ) 13t ; )
O My = 1Y L o (5)0 (5 ds.
k=1
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There exists a Brownian motion W; such that
t
M} = J Xi(zs)dWk.
0

Consequently,
t t
Th = ah + J bi(xy)ds + f Xi(zs)dWE,
0 0
proving that z; is the solution to the SDE driven by W;. O

The following theorem illustrates that uniqueness implies Markovian property.

Theorem 4.15.13 [3, 174] Let L : B,(X) — By(X) be a linear operator. Suppose that for
each probability measure 1 on X, any two solutions X,Y of the martingale problem for
(L, ) satisfy that for anyt > 0,

P(X;e A) =P(Y; € A), VAe B(X).

Then, any solution of the martingale problem (MP) for L with respect to a filtration G,
is Markov process with respect to G;. Furthermore uniqueness holds for the martingale
problem for L.

Proof Let (X;) be a solution of the martingale problem (MP), on a probability space
(Q, F,P), for £ with respect to a filtration G;. Then for any f,g; € By(X) and for any
r=20,0<t;<ta<- - <ty <tphii,

tn+1

B (£(Xrit,0) = £ = [ FC6ds) | 6] =0, 4.9

tn
We show that for any ¢ > 0, » > 0, and f € By(X),
ELf (Xe1r)|Gr] = ELf (Xetr) | Xr]-

Equivalently, we show that for any I' € G,,

f F(Xeer)dP = f E[f(Xpsr)| X, ]dP. (4.10)
T T

Assume that P(T") > 0, let us define two probability measures on ({2, F) as follows:

P(C ~nB) _ [ E[15|G,]dP
P(T) PT)

[15|X,]d
P)

P1(B) = P(B) = i E
Then,

1 1
| 1t s | snar [ BUGXE - s [ 1P
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Let Y; = X;.,, the required identity, (4.10), can be written as

L F(¥;)dP; = JQ F(Yi)dpy,

which follows from the uniqueness assumption on the marginal distributions, if we
can show that Y; solves the MP for £ on (2, F,P;) and on (2, 7,P2). Note that

F(Xottnin) = [(Xpat,) —
Ji( J

in

tn+1

J(Xp+5)ds ) dPy

tn+1

= B(0) | E(F(Xrit) ~ Frin) ~ | s | ) ap

tn+1

B0 [ B[B( X0~ 1) |

showing that Y; solves the MP for £ on (2, F,P;), similarly on (2, 7, P;). O

[(Xris)ds | G| | X, )dP =0,

The following is proved in Theorem [5.1.20

Theorem 4.15.14 Let X7 X and X, be bounded and continuous. Then for any initial
probability distribution there exists a martingale solution for £, on C(Ry). If the local
martingale problem for 6, has a unique solution, then there is a unique solution for any
initial distribution. Well-posedness of the local martingale problem for L implies that the
solution is a Markov process.

See [?, pp 295, Corollary 3.4] and [?, pp.419, Thm. 21.9, Thm 21.10 om pp 420].
The following theorem is similar to [3, pp 234, Theorem 8.10].

Theorem 4.15.15 Let X; be continuous, consider the SDE driven by (X;). Suppose that
wealk uniqueness holds and that the solution is global. Suppose that the C(R, X)) local
martingale problem for (L, 1) has at most one solution. Suppose that x,, is a sequence of
adapted stochastic processes with sample paths in C(R; X), and is relatively compact,
with L(z,(0)) — u, a probability measure. Let M < BC be a measure separating set.
Suppose that for each f € C%,

n—a0

tim sup E[(f (e, (£)) — f(2n(s)) — j Cf (@) du) T hi(2,,)] = 0

Jorallh; e M,0 <t <ty <...ty <s <t. Then there exists a solution z to the martingale
problem for (L, 1), and the distributions of xz,, converge to that of = (weakly).

Proof Since z, is relatively compact we only need to identify its accumulation points.
Assume that z,, — x. Then by taking n — o we see that

E[(f(x(t) — f(z(s)) f CF (@) du) T i(,)] = 0,
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and f(x) — f(zs) — Si Lf(x,)du is a martingale. Consequently z; solves the martingale
problem for £. By weak uniqueness, it is a Martingale with generator L. O

4.16 Ellipticity
The operator L is elliptic if for any « and any ¢ € R",

Z )& > 0.

It is strictly elliptic if there exists ¢ > 0 for any = and any ¢ € R", such that
2 )&k; > cléf*.

For some authors, strictly ellipticity includes also an upper bound. Observe that 7
being an invariant measure is equivalent to £*7r = 0 in the distributional sense. If
m << dzx, then m = gdr and SR" Lfgdx = 0 for some Borel measurable function g for
f € Dom(£). It is natural to work with L?(dz), in terms of the L? adjoint operator

jfﬁ*gda: = 0.

For elliptic operators, m has a (smooth ) density with respect to dz. An operator
with smooth coefficients and satisfying Hormander’s bracket conditions has a smooth
density.

Note that
€05 2 g, @09~ S, 0
axlaxj ai9) = 0 (big)
is the sum of a diffusion operator and a zero order term Vg where

n

1 (32611'7] 8bl
2”2_31 0x; 07 Z or;

Example 4.16.1 The Brownian motion on R" has no finite invariant probability mea-
sure. Its only invariant measure is dz. It has no non-constant harmonic functions.

Example 4.16.2 The Ornstein-Uhlenbeck process has a unique invariant probability
measure.
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We write L, g = ), a%(blg)’ the Lie derivative of ¢ in the direction of b.
Exercise 4.16.3 Let b: R" — R" and V : R" — R are smooth.
L= %A+Lb+va.
Suppose that div(b e 2") = 0. Show that e~?"dz is an invariant measure.

Definition 4.16.4 A diffusion process is a continuous strong Markov process.

4.17 Appendix: Resolvent Operator*

Having seen that a strongly continuous semi-group 7; on a Banach space E is de-
termined by its generator £ (which is always densely defined and closed), we define
the resolvent operator (Ry, A > 0) of the semi-group and show that it is the inverse to
A—L.

Definition 4.17.1 For any A > 0, we define R) : £ — E by

Q0
Ryx = f e T ads, Ve e E.
0

This is an improper integral using the strong continuity of 75 and that

Q0 Q0
f e M| Tyx|ds < |x|f e Mds < 0.
0 0

This also shows give the norm bound: |R)| < %

Proposition 4.17.2 If T, is a strongly continuous contraction semi-group E, then R) is
a strongly continuous contraction resolvent on E.

Proof We have seen already |AR)| < 1, we next show the continuity:

Q0 0
AR z — 2| = |f e MT,xds — f
0

0
efsxds‘ = f er‘Tu/Aaz — x’du,
0 0

passing limit inside the integral by the contraction property of 7; and dominated con-
vergence. Finally let 7, 7* be independent exponentially distributed random variables
on R with parameter A > 0, x > 0 respectively. Then, ET . x = SSO T,xhe s = ARyx and

ETTA TTH.'E = )\[LR)\R#.
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Now 71 + 7 is distributed as
A
7#(67)‘8 — e H¥)ds.

A—p
Using the semigroup property,
A
ﬁ(m — R,) = MiR\R,
proving the resolvent equation Ry — R, = (A — p)R\R,,. ]

Example 4.17.3 If T, f(z) = {, f(y)P:(z, dy) on By(X) be given by a transition function.
Then

Raf@) = [ sy

0
Observe that 0 < f < 1 implies that 0 < R, f < 1. Also the conservative property 7;1 = 1
is equivalent to R\1 = 1.

Proposition 4.17.4 Let T; a strongly continuous contraction semi-group E with gener-
ator L, then the following statements hold for any A > 0.

1. Foranyz € E, Ryx € D(L);
2. Forany z € D(L), LRyx = RyLx.

3. Any number )\ > 0 belongs to the resolvent set o(L) and Ry = (A — £L)~!. Conse-
quently,

A=)~ <

> =

Proof (1) Let A > 0, and = €E, by the contractive property,
0 Q0 1
Ry = \ [ e dtH < [“ean el < Flall @.11)
0 0

hence R)x is well defined. For any h > 0,

T, — 1 1 (®
hh Ryx = 7 J eiAt(ThTtm — Tix)dt
0
1 (® 1 (®
=5 f e_)‘(t_h)Ttxdt 7 f 6_)‘tTt$dt
h 0
Ah 1 (® 1 h
¢ f e_)‘tTta:dt — f e_’\tTtwdt
h Jo h Jo

(h—_)?) ARy x — .
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Hence Ryz € D(£) and
L(Ryx) = ARy — z, (4.12)

proving
A=L)Ry = Ig.

So, A — L is injective on D(£), and R) is the right inverse.

For z € D(L),
Ry (Lx) definition sll_r)glo f e MTy(Lx) dt
- sh_r,ﬂlo Osﬁ(e—)\tTtaj) dt = sh_{roé L( ETt(e—Atm) dt )
We used part (i) of Theorem Since
R3 — Rz, L(R3) — R Lz,
and L is closed by Theorem L(R5) — LRy, concluding
RyLx = LRy, Ryx(A = L) = I,
the latter follows from . Thus, Range(A — £) = E, and (A — £)~! = R). I

If \ is a complex number with strictly positive real part, R, is well defined, which
allows to conclude that ¢(£) is contained in the open right half of the complex plane.
Strictly speaking, for this we should complexify the Banach space and extend the
operator to the complexification by £(z +iy) = Lz +iLy. Note that A — £ being injective,
surjective, invertible, as well as its boundedness are the same for £ and £. With this
set up, the proof above leads to:

Corollary 4.17.5 Let L be the generator of a strongly continuous contraction semigroup
on E. Then o(L£) o {\: Re(\) > 0}, for such A,

1
Re()\)’

[A=0)7Y <

Example 4.17.6 Let £ = {f : R, — R, : bounded and uniformly continuous}, then
Tif(x) = f(z + t) defines a strongly continuous contraction semi-group on E. If A\ =
—a + bi with a < 0, then f(t) = eM € E and in D(£). Now, Tif = eMf and Lf = \f, so the
resolvent set o(L£) is the right half of the plane.
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4.17.1 M-Dissipative operators

In this section we show the Hille-Yosida theorem: a closed and densely defined linear
operator £ on a Banach space E is the generator of a strongly continuous contraction
semigroup on E if and only if it is M-dissipative.

If A is a symmetric matrix and A is in its resolvent set, then one expects that

1

[(A=A4)71 < AN, Spe(A))”

For an unbounded operator, we do not expect this to hold. We make an assumption
of this nature.

Definition 4.17.7 Consider a linear operator A:D(A) c £ — E.

* A is said to be dissipative if

IO\ = A)z| = Az| Ve D(A), YA > 0.

* A is said to be M-dissipative (maximal dissipative) if for any A > 0, A — A has an
inverse and

A=A < <. (4.13)

> =

If A is M-dissipative, it is clearly dissipative. Indeed,
1
[(A = A) e < ylel, Vo e B, YA >0,
For any g € D(A), simply replace = in the M-dissipative inequality with (A — A)g.

Exercise 4.17.8 Suppose that A is closed and (A — A) is invertible any A > 0. Show
that A is dissipative if and only if A is M-dissipative.

Let F be a Hilbert space, and A : £ — F a densely defined linear operator. Its
adjoint operator is defined on the set of # such that there exists an element of F
which we denote by A*z with

(A*z,y) = (x, Ay), YV y € Dom(A).

We say A is self-adjoint if A* = A. If A is a self-adjoint operator on a Hilbert space,
being dissipative means (Ax,z) < 0. This agrees with our intuition that A is sort of a
generalisation of a symmetric negative definite matrix (A self-adjoint operator is called
negative definite if (x, Az) < 0 for any =z € Dom(A)). The following theorem holds, [?]:
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Theorem 4.17.9 Let A be closed and densely defined. Suppose that both A and its
dual A* dissipative, then A is the generator of a strongly continuous semi-group.

We recall that the generator of a strongly continuous semigroup is dense. Anyhow,
if it is not dense we could think of getting ride of the superfluous parts.

Recall that o(£) = {A e C: (A\— L) : E — FE is bijection}. If A € o(£) we denote
Ry = (A — £)7!its inverse. Then LRy = AR, — id. M-dissipative means |R,| < }.

Lemma 4.17.10 Let L : E — E be a M-dissipative, closed, and densely defined opera-
tor. Then,
lim ARy x = x, Vee FE.

A—00

Consequently, for every x € D(L),
Lx = lim A\LR) =.
A—00

Proof Let z € D(£) and denote Ry = (A — £)~!. We have:

1
ARz =z = [ARxz — RA(A = L)z] = [ RaLa] < {]Lz] -0,

we used the M-dissipative condition |AR,| < 1. Since D(£) is dense, this holds for all
reFE. [] Let us write Ry, = (A — £)~!, then

Ly := MRy = MARy —id) = >Ry — \.

Definition 4.17.11 [, is said to be the Yosida approximation for L.

Lemma 4.17.12 Let L be a densely defined closed M-dissipative operator. Then L) is
the generator of a uniformly continuous semigroup of contractions which we denote by
T} . Furthermore,

|TPe — Tf'zx| < t|Lax — Luz|, YA, p=0.

Proof Since |£,| < 2\, £, is a bounded operator and 7T; = ¢'** is a uniformly contin-
uous semi-group. Furthermore,

Hetﬁ/\H _ ”et()\QR/\f)\)H — e M et/\Q\RA\ <1.
Also, .
Hetﬁ)‘l' _ €t£“ZEH _ J iestﬁx&-(l—s)tﬁuxds
0 ds

1
f t(,C)\ _‘C“)est,ﬁ)ﬁ-(l—s)tﬁux ds
0

< t|Lyx — Lyz|.
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O

Theorem 4.17.13 (Hille-Yosida theorem) A linear operator £ on a Banach space E
is the generator of a strongly continuous contraction semigroup on E if and only if the
JSollowing statements hold.

1. L is closed and densely defined.
2. L is M-dissipative.

Proof — The only if part follows from Proposition [4.15.1|and Theorem [4.14.1
<= Suppose that £ is closed, densely defined, and M-dissipative. Then ro z € D(£L),
|Lax — Lyx| = MR x — pLRyx| < [MCRyx — Lx|| + [|[pLRyx — L

1 1
< (5 + )ILx|.
(5 + el
By Lemma 4.17.1
1 1
|1 = Tfa] <t(5 + L], VA u=0.
7]

So T*z converges as A — oo uniformly in ¢ on finite intervals. Set,

Tyx = lim Tz
A—0

H <1, and Tyz = x. Tt(TSZL‘) =
lim)_,, e!“*(T,x). Since e** is a contradiction, we can approximate T, f by e***, which
gives lim_,, e!“x (552 x) = Ty gx.

tLy

Finally let A denote its generator. Let € D(£). Then,

t

d
( T}z —z)=-lim | —T}zds

1
—(Tix — —
(tx x> t Ao Od

lim
t A—

e B

1 t
= — lim f LTz ds = = llm Ts)‘ﬁAx ds = tj TsLxds — Lx.
0

t A\>© t A>© 0

Hence z € D(A), on which £ = A. Note that D(£) < D(A).
By Theorem any positive number \ € g(A), (A — A) is a bijection, and
(A = A)(D(A)) = E.

By the M-dissipative property, so is (A — £)™1, (A — £)(D(£)) = E. In particular, since
L=AonD(L) cD(A),
A—=A)(D(L)) = E.

As )\ — A is injective, the two domains have to be the same. O
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Corollary 4.17.14 A closed densely defined linear operator £ on E is the generator of
a strongly continuous contraction semigroup on E if and only if it is M-dissipative.

Reference: [?, ?].

Corollary 4.17.15 If T; is a symunetric strongly continuous contraction semigroup on
E, then there exists a self-adjoint operator A bounded from below s.t. T; = e~ *A,

Proof The generator £ of T; is closed and densely defined, and the resolvent o(£) >

(0,00). Also,
et = (im L) < (5. 192

t t—0 t

hence £ is symmetric. The spectrum of a closed positive symmetric operator are: the
upper half complex plane, the lower half, the whole space, or a subset of R. Hence
o(L) < [0,0) which means the range of (£ +1) is £ which implies that £ is self-adjoint.
That ¢(£) < (—,0], which implies £ is bounded from above. The two semi-groups,

with the same generator must agree: T, = e*~. OJ

4.17.2 The dual space of C;(X)

Let us now return to make connections with Markov processes (on a locally compact
space). The reason that we can even hope to construct a Markov transition func-
tion from a semigroup of linear operators in the first place is Riesz’s representation
theorem which we recall below.

Definition 4.17.16 Let E be a vector space of functions with values in K (where
K = R or C). A linear functional ¢/ on F is a linear map ¢ : E — K. A positive linear
functional ¢/ : F — R is a linear functional such that ¢(f) > 0 whenever f € E is a
function with f > 0 pointwise.

Let F be a normed vector space, its dual space is the set of all bounded linear
functionals on F and is denoted by E’. The dual space E’ of a normed vector space
with the operator norm is always a Banach space. The dual space contains linear
functionals of the form ¢(z¢) = ||z¢| and |¢| = 1 (use Hahn-Banach Theorem). Then
|| = sup{ Mn(fu)' : £ € E* 0 % 0}. The dual F’ is large enough to separate points in F (for
any x + y in F, there exists ¢ € E' with ¢(z) + £(y)).

Definition 4.17.17 1. A sequence z, in a normed space F is said to convergent
(strongly convergent) if |z, — 2| — 0 for some x € E.
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2. A sequence z,, in a normed space E is said to weakly convergent if there exists
x € FE such that /(z,) — {(z) for every ¢ € E'.

Given a function space F, it is interesting to know what is its dual space. A
desirable property for functions space F is that E’ consists of measures on E. In case
E’ consists of measures then the weak convergence of f, € F to f in £ means:

JE Jndp — fE fdu,

for every p € E’. This is a very useful concept. If f, — f then |f,| is in fact bounded.
Indeed, for every p € E’, the convergent real sequence u(f,) := {; fndu is bounded.
From this the boundedness of the norm follows from the uniform boundedness prin-
ciple. A measure is said to have finite total variation if |u|(E) = sup;’, }; [v(E;)| where
E = U;E; is a partition of E.

Theorem 4.17.18 (Riesz-Markov) Let X' be a locally compact metric space. Then the
dual of the Cy(X) is the space of signed Borel measures on X with finite total variation.
In particular, if ¢ : Co(X) — R is a positive linear functional, then there exists a unique
Borel measure ;. on X with finite total variation such that

of) = L fdu  YfeCo(X).

This is originally obtained for X compact, the measure is constructed by:
0(0) = sup{{(f) : f € €(X),0 < f < 1,supp(f) = O},
p«(E) = inf{p(O) : E < O, O is open}.
See e.g. [?] for a proof in the compact case.

Note. References for this section are: [?, ?, ?]

4.17.3 The C)-property

We are specially interested in a Markov process with a Markov transition function P,
in which case

Tof(x) = L £(2) Pu(e, dy) = Bal £(X0)],

defines a Markov transition semigroup on B,(X). There is, a priori, no regularity of
the mapping ¢t — 7T; (strong continuity). It turns out that most Markov transition
semigroups are not strongly continuous on B(X'). It is however this regularity which
allows us to encode the semigroup in terms of a generator by means of the Hille-Yosida
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theorem. This can be remedied by restricting the semigroup to a smaller space. We
therefore define
&= {f € By(X) : Im |Tof — flo = 0},

This is the maximal subspace on which (7}):>¢ is strongly continuous. An ¢/3-argument
shows that £ is a Banach space and, clearly, 7;(£) < €.

One way to ensure the existence of the transition function is to exploit theo-
rem and to develop a theory for Markov semigroups (7;) which leave Cy(X)
invariant. This leads to the so-called Feller-Dynkin processes. Another possible res-
olution of the dilemma is via LP-space, provided we have a guess for the invariant
measure and work on an L? space, see section below.

We state the following theorem without proof, which can be proved similarly to the
proof that a super-martingale has a cadlag version. The interested reader may refer
to [17, Thm 2.7, pp91], [10], [18, Section III.7].

Theorem 4.17.19 If (X;) is a Markov process with transition semigroup (1;), which is
strongly continuous on Cy(X), then there exists a cadlag modification of (X;), which is
a (F;")-Markov process with the same transition semigroup.

Corollary 4.17.20 If X is locally compact and T; : Co(X) — Cy(&X), t = 0, is a positive
preserving contraction semigroup and also defined on 1 with T;1 = 1, then there exists
a transition function P;(z,dy) on X such that

Tif@) = | fPd) S eCy) (4.14)

Furthermore for any A € B(X), z — Pi(z, A) is measurable.

Proof Then for each z € X and ¢t > 0, we have a probability measure P;(z,dy), which
is dual to the bounded positive linear map f € C(X) — T;f(z) € R we define a linear
functional by f — T;f. Note that |7} f(z)|x < |f|e. The measurability of « — P;(x, A) for
any A € B(X) follows by a simple monotone class argument. By Theorem the
Markov process has a cadag version, hence — P,(z, A) is measurable and has at most
a countable number of jumps. The joint measurability of (¢,z) — P,(x, A) follows. []

Exercise 4.17.21 Write down a Markov process for which £ # B(X).

We say that X defines a Feller process if T;(BC (X)) < BC(X) for all ¢ > 0.

Exercise 4.17.22 Show that X is Feller if and only if, for all t > 0, z — Pi(x,-) is
continuous as a map X — P(X) if the latter is equipped with the topology of weak
convergence.
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The terminology is not uniform across different textbooks. Sometimes authors call X
Feller if X is locally compact and T3(Co(X)) < Co(X) where

Co(X):={feC(X): Ve > 03K c X compact : |f(z)| <eVxe X\K}.

For distinction we speak in this latter case of a Feller-Dynkin process. It is clear that
this approach is problematic for infinite-dimensional X'. In fact, let X be an infinite-
dimensional normed space, then Cy(X) = {0}. Nonetheless, we have the following
result, see e.g. [17), Prop 2.4, pp89]:

Lemma 4.17.23 Let (T;) be the Markov transition semigroup of a right continuous
Markov process with T; (Cy(X)) < Co(X). Then (13) is strongly continuous on Cy(X).

(It is sufficient to replace the right continuity of X; by lim o P, f(z) — f(z) for any c
and any f € Cy(X).)

Proof For a >0, let R, f := Sé e *Tsg(z)ds. Let f = R,g for some g € Cy(X). Then

o t
Tif(x) = eatf e *Tyg(z)ds = e f(z) — eo‘tf e “Tsg(xr)ds Vre X,
t 0

whence .
ITof = Floo < (2 = 1) flloo + € fo ITugllo ds — 0

as t — 0. Consequently, (7;) is strongly continuous on R, (Co(X)).

We then show that R,(Co(X)) is dense in Cy(X). If not, since Cy(X)* separate
points and as a consequence of the Hahn-Banach and Riesz-Markov theorems, there
is a finite, non-zero (signed) measure ;. on A such that

f Rogdp =0 VgeCy(X).
X
It follows by the (first) resolvent identity
Rg = R, — (8 — a)RRg, Va, 5 >0, (4.15)

we have
J Rggdp =0 VgeCy(X),B>0.
X

But this contradicts the fact that, since T;g(z) = E;[g(X¢)] — g(z) by right-continuity
of X, BRgg(x) — g(x) for any € X as  — co. In fact, then by dominated convergence

0 = lim ﬁf Rﬁgdu=f gdp, Vge Co(X),
- Jx X

i.e., p =0, contracting the assumption that R, (Cy(X)) is not dense. ]
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4.17.4 Strong Markov Property

For some purposes the natural filtration of a Markov process may be too small, e.g.,
the hitting times of open sets by Brownian motion are no stopping times with respect
to the natural filtration. For a given filtration (%), we let F," := [ _, 7, denote its
right-continuous version.

Proposition 4.17.24 Let (X;) be a Markov process with right-continuous sample paths.
If its transition semigroup (T;) leaves BC(X) or Cy(X)-invariant, then (X;) is an (F;")-
Markov process.

Proof Let 0 < s<tande > 0. For f e BC(X), we have that
E[f(Xtrsve) | F| = E[ELf (Xersre) | Forel | F ] = B[Tof (Xore) | F -
By right-continuity and bounded convergence, we can take ¢ — 0 to conclude
E[f(Xes) | F] = B[Tf (Xo) | FS] = T (Xs).

for bounded continuous test functions f : X — R. To see that this in fact holds for
any bounded measurable f, we fix A € ;" and define the measures

pa(B) =E[E[15(Xers) | Fo|1a],  va(B) = E[T31p(X;)14].
Both have the same total finite mass, and
J fd,u—f fdv VYfeCyX).
X X

Since Cy(&X') is measure-determining class, us = v4, as required. ]

Let 7 be a stopping time and recall that

Fri={AeF: An{r <t}e FVt=0}

defines a o-field. The following two lemmas are standard: With this one can show that

Lemma 4.17.25 If (X;) is adapted and right-continuous, then X:1,_, € F;.

This follows from approximation of the stopping time as follows.

0

E+1
T 1= kzo on 1{2%<T<%} +001{T:oo}a n € N.

Then 7, is a stopping time for eachne N and 7, | T a.s.

The next theorem shows that Feller processes are strong Markov:
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Theorem 4.17.26 Let (X;) be a right-continuous Markov process whose transition func-
tion leaves either Cy(X) or BC(X) invariant. Then it is strong Markov. If (X;) is cadlag
(respectively continuous) , the Markov process in the canonical picture is:

E[® 0 0110y | Fr] = 1reon}Ex, [®], (4.16)

where & is a bounded measurable function on D([0,1], X) (on the Wiener space).

Proof Let us first suppose that 7 takes only a countable number of values {t; : k € N}
with 0 <t <ty <--- <.-- <oo. Then, using Theorem (3.4.14] we get for each B € F.,

18

E[(I) 0971{T<oo}1B] = ]E[(pogtk)l{‘r:tk}lB]

e
I
—

Il
i

E[E[@ o Htk ’ ‘Ftk]]‘{T:tk}]‘B]

i
)

Il
i

E[Ex,, [®]1 (o1 15] = E[Ex, [B]1(, 0y 1],

ey
I
_

Here we used the fact that B n {r =t} € F; for each Be F, and t > 0.
If feB,and ®(X) = f(Xy), this is:

E[f(Xt+T>1{r<oo}’]:T] = th(XT)1{7-<oo}~ (4.17)

Now assume a general 7, for the approximating sequence of theorem [3.5.3]

E[f(Xt+Tn)1{Tn<m}’fT] = th<XTn)1{7-n<oo}-

By the right-continuity of X and the Feller property of 7}, for any f € BC (or f € Cy(&X)),
holds by bounded convergence, for any f continuous and bounded. By the
standard method, this holds for bounded measurable f. It then remains to prove this
for functions of the form II}" , f;(z,) and thus for all bounded measurable functions.

For continuous paths, the analogous conclusion obviously holds. O
The strong Markov property states that the process restarts at any stopping afresh.
Example 4.17.27 Let us return to Example ??, consider the transition function

Py(z,dy), ifx+#0,

du) =
e {&)(dy), ifz =0,

where P, (z,dy) = pi(z,y) where p:(x,y) is the heat/Gaussian kernel. If z + 0, we have
a Brownian motion, e.g. P(X; € A) = {, pi(z,dy) for any ¢t > 0. But when it hits zero
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(it does in finite time), it gets stuck at 0: from this stopping time, this is no longer a
Brownian motion. However, the Markov property would require that z;,. to behave as
a Brownian motion starting from 0. More precisely, let 7 = inf;~o{z; = 0}, then z,1; =0
for all t.

Let us take a look from the definition of the strong Markov property. A realisation
of the Markov process from z is:

v+ W, ifXg=x2#0,
Xt =
0, if Xo =0,

for a one-dimensional Brownian motion (W;);>o. Take ®(0) = (¢(1))%2. Suppose that
X(0) =0, then Ex_(X(1))2 = 0, as X(¢) = 0 for all time ¢t when X (0) = 0. On the other
hand,

E((X140)21F7) = E((@ + Wig)?IF) + 0.

This Markov process is not Feller!! Let f be a continuous and bounded function,
then

Pf(0) = £(0),  Pif(z) = Lﬂy)pt(x,y) dy.

For ¢t > 0, lim,_,¢ P, f(z) + f(0) in general. Take for example f(y) = y>.



Chapter 5

Weak convergence and solutions of
martingale problems

We have previously discussed weak convergence, Prohorov’s theorem, tightness. In
this set of lecture we cover weak convergence on the space of continuous processes,
touching on Cadlag processes.

In our next 2 lectures, we shall cover the following only: the Ascoli-Arzela Theorem
for tightness (Theorem [5.1.9), Kolomgorov’s theorem for tightness (Theorem [5.1.15),
and an application an application to the existence of martingale solution (Theorem

5.1.20).

5.1 Weak convergence

A family of random variables / stochastic processes is said to converge weakly, other-
wise known as convergent in distribution, if their probability distributions converge.
To prove that a family of stochastic processes is weakly convergent, we follow two
steps:

(1) We demonstrate that the family of their probability measures forms a relatively
compact subset of a suitable function space; in our context, this is typically the
Wiener space.

(2) We show that all accumulation points of the family are identical, ensuring con-
vergence to a single limit in the distribution sense.

We emphasise the standing assumption that the state space X of the random

120
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variables under consideration is a complete, separable metric space, and B(X) is its
Borel o-algebra. Recall that a subset of a topological space is relatively compact it its
closure is compact. A set is compact if every cover of the set by open set contains a
finite sub-cover. In a complete separable metric space, a set is relatively compact if
and only if it is sequentially compact, meaning that every sequence from the set has
a convergent subsequence in X'.

Let P(X) denotes the set of probability measures on X.

Definition 5.1.1 Let P,,P € P(X). Suppose that for every bounded continuous func-
tion f: X - R,

Le fdP, — L{ fdP, (5.1)

we say that P,, converges weakly to P, denoted by P, “Wp,

An equivalent criterion is that holds for every bounded Lipschitz continuous
function. This is substantiated by the fact that for every closed set F' — X,

fela) = (1 = ~d(a, F)),

where d(z, A) = infc4 d(z,y) denote the distance from z to A, is a bounded Lipschitz
continuous function. Moreover, 1p < f. < 1pc, where F, = {z : d(z, F) < €}. Therefore,
holding for all bounded continuous functions implies one of the equivalent state-
ments in the Portmanteau Theorem: lim sup,,_, P, (F) < P(F) for all closed sets F.

Weak convergence is preserved by continuous mappings.

Proposition 5.1.2 Let f : X — X be a continuous map between metric spaces. If
P,, P € P(X) with P,, — P, then the pushed forward measures satisfy: f*P, — f = P.

Exercise 5.1.3 Suppose that z,,y,,r are random variables on a probability space
(Q, F,P) with values in a complete separable metric space (X,d), and assume the
following conditions:

(1) z, — = weakly.

(2) d(zn,yn) — 0.

Prove that y,, — y weakly.

Hint: The weak convergence of z,, — = can be charecterised by the condition: lim sup,,_,., P(z, €
F) < P(z € F) for any closed set F' in X. Note that if you define F. = {y : d(y, F') < ¢} as
the e-expansion of F, it holds that F, | F' and

P(y, € F) < P(x, € F) + P(d(xpn, yn) > €).
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5.1.1 Tightness

For probability measures, there is the concept of a probability measure being tight
and a family of probability measures being tight (uniformly tight).

Definition 5.1.4 A measure is tight if, for any ¢ > 0, there exists a compact set K
such that P(K) > 1 — e. Similarly, a family of probability measures is tight if, for any
e > 0, there exists a compact set K such that P(K) > 1 — ¢ for every measure P in the
family.

Any finite family of probability measures on a complete separable metric space is
tight.

Theorem 5.1.5 (Prohorov theorem) On a complete separable metric space, a set of
probability measures is tight iff it is relatively compact.

Corollary 5.1.6 If A = {u. : e € (0,1]} is a tight family of Borel probability measures on
X, and each weakly convergent sequence {P, }, where ¢ | 0, from A has a convergent
subsequence with limit u, then u. — p weakly.

Proof Suppose that i does not converge to ;. weakly. Then, there exists a bounded
continuous function f : X — R such that

L fpe — L Fdp 4 0.

Consequently, for some ¢ > 0, there exists an decreasing sequence ¢, with p., € A

such that
U fdpie, —f fdu) > €.
X X

However, applying the tightness assumption, we find a sub-sequence ., such that
Sx fdie,, — §y fdu. This results in a contradiction, as the inequality above would be
violated by the convergent subsequence. Hence, u. must converge weakly to . O

5.1.2 Tightness on the Wiener space
A reference for this section is Chapter 13, Revuz-Yor. We first study the weak con-

vergence of continuous stochastic processes to continuous stochastic processes. A
continuous stochastic process on R? with time horizon [0,7] has trajectories in the



5.1. WEAK CONVERGENCE 123

Wiener space C([0,T];R?), while the later with the supremum norm is a separable
Banach space. On C(R,;R%), we may define the metric:

n SUPc, [w(t) — w'(1)]
1+ sup,,, lw(t) — W'(t)]

0
d(w,w') = Z 2”
n=1

We denote by I the time interval [0,7] or R, and W the Wiener space on either.

Definition 5.1.7 ¢ The finite dimensional distributions of a measure on the Wiener
space are the pushed forward measures: (7, . +,)«i Where n € Ny, ti,...,t, € I
and

n

Tyt i wEWe — (W(th),...,w(t,)) e R™
are the multi-coordinate projections.

* The finite dimensional distributions of a continuous stochastic process (X;,t €
[0,T7]) are that of its probability distribution on C([0, 7]; R%).

e If for a sequence of stochastic processes (X,), for every collection (¢i,...,t,),
(Xf,..., X} ) converges in law, the sequence of stochastic processes is said to
converge in finite dimensional distributions.

Furthermore, the collection of cylindrical sets of the form
{w:w(ti) e Ai,i=1,...,n},

generates the Borel ¢ algebra. Here A4; € B(R?) and ¢; is in the time interval. This can
be verified with the fact that projections are continuous functions, the cylindrical set
is the pre-images of II ; A; by 7, ..+, is in the Borel o-algebra. Conversely, any closed
ball is countable intersection of cylindrical sets:

{@:fw—ofe <a} = {0 |wlg) —w(g)] < a,Yge Q}
where Q is the set of rational numbers and thus the Borel measurable sets are in
the o-algebra generated by the cylindrical sets. Consequently, the measures on the
Wiener space are determined by their values on cylindrical sets, and therefore the
finite dimensional distributions of a stochastic process uniquely determines its prob-
ability distribution.

However if y,, € P(C([0,T];R?), the convergence of the finite dimensional distribu-
tions of u, does not necessarily imply the weak convergence of u,. Take for example
= 6g, ln = dq4, where g = 0 and g, are continuous piecewise linear determined by:
gn(z) =0, gn(%) =1, and gn(%) =0.
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gn()

Then, p, — p in finite dimensional distributions on C([0,T];R%). Specifically, for
any given (t1,...,t,), where ¢; > 0, dy(w(t;) € A;,7 = 1,...,n) takes the values {0, 1}, it is
1 only if 0 € n;A;. One can choose n sufficiently large so that 22 > min(t,...,t,). For
such n, g, (w(t;) € Aj,i=1,...,n) =1 only if 0 € n; A;.

However, ,, does not converge weakly. For instance, consider the bounded con-
tinuous function ¢(f) = min(|f|, 1) on the Wiener space. In this case,

(f)u(df) = @(g) = 0, O(f)pn(df) = ®(gn) = 1,

JC([O,T];Rd) fC([O,T];Rd)

as |gn|oo = 1.

To investigate tightness of measures on the Wiener space, we describe its relatively
compact sets. For § > 0, and for any function f € C([0,7];R?), define its modulus of
continuity as follows:

V()= sup () — f(s). (5.2)
s,te[0,T]:|t—s|<d
A function : [0, 7] — R? is uniformly continuous if and only if lims_q Vs(f) = 0.

Observe that § — Vs(f) is an increasing function. Moreover, since f is uniformly
continuous, limy_,q V5(f) = 0. Furthermore, |Vs(f) — Vs(9)| < 2|f — g|w-

The following characterisation for relatively compact subsets follows from the Arzela-
Ascoli Theorem:

Proposition 5.1.8 (Ascoli-Arzela Theorem) A subset D of C([0,T];R?) is relatively
compact if and only if:

(1) sup;p |£(0)] < o0:
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(2) Uniform continuity, uniformly over D, i.e.:

limsup Vs(f) = 0.
6—0 feD

Passing to the tightness of measures, we present the following theorem. Recall
that 7 : C([0, T]; R?) — R? denotes the projection 7 (f) = £(0), and (m)«u(A4) = p({w :
w(0) € A}) denotes its pushed forward measure on R?.

Theorem 5.1.9 (Ascoli-Arzela Theorem for tightness) A family A < P(C([0,T];R?)
is tight if and only if the following holds:
(1) The set of measures {(mg)«u : 11 € A} on R? is tight.

(2) Vs — 0 in probability, uniformly over A, meaning that for any n > 0,

limsup p({Vs(f) = n}) = 0.
—V pueA

Proof Firstly assume that A is relatively compact, therefore it is tight by Prohorov’s
theorem. For any e > 0, there exists K. compact with u(K.) > 1 —e.

Since K. is compact, according to Proposition [5.1.13, there exists C. such that
lw(0)| < C¢ for any p € A, hence pu(w : |w(0)] > C¢) < u(K¢) < e. Furthermore, for any
n > 0, there exists § such that V;(f) < n for all f € K., hence fro u € A,

p(w: Vs(w) = n) < p(K7) <
proving (ii).

Conversely assuming (i) and (ii) holds. For any ¢ > 0, we construct a relatively
compact subset K,. Firstly there exists C. > 0, such that u(lw(0)] > C) < 3e. Set
Ac, = {w : [w(0)| < C¢). For any n = L, there exists §,, . such that

1
pwlw: Vs, (w) = E) <2 mtle
Set .
Kem = {07 Vi @) < -}
and
K.=Ac, n (np_1Kem)-
Then

)+ Z W Kem) <€
k=1

W(KS) < P(Ac



5.1. WEAK CONVERGENCE 126

On K.,

w(0)| < C¢ and for any 7 > 0, choose kq with % <, for any § < d¢m,

1
i < < o
Hm Vs(w) < Voo (W) < <

and lims_,o V5(w) = 0, so K, is compact by Proposition |5.1.13|

If K is a compact set, then sup,, ; |w(0)| < C for some constant C' and for any 7
there exists §; such that

sup s, () < n.
weK

Since w; increases with §, the above holds for any § > §. Let us denote this set by
K-

If {P,} is relatively compact, hence tight then, for any ¢ > 0, there exist C,7,n such
that P,(K¢c;s,) > 1 — €. This proves the two conditions hold for any n > 0.

If condition (i) and (ii) are satisfied by {P,},>n,, since {P,},<n, is tight and satisfy
(i) and (ii) uniformly we may assume the conditions are satisfied for all n. O

Note that a family A < P(C([0,7];R?) is relatively compact if and only every se-
quence from A is relatively compact.

Remark 5.1.10 The two conditions can be rephrased as follows:

(i) For any e > 0 there exists a number C > 0, such that u(|w(0)| < C) > 1 — € for any
e A.

(ii) For any ¢ > 0 and n > 0, there exist § > 0 such that for any p € A4,
plw: Vs(w) <n) =1—e
For (i) it is sufficient to note that ws; decreases with § so for any 5 <94,
plw: Vi(w) <n) = pw: Vsw) <n) >1-e

For a sequence A = {P,}, (2) can be rephrased as: for any ¢ > 0,7 > 0 there exists
ng and J such that for n > ny,

Pp(w:Vs(w)<n)=>1—c¢

Exercise 5.1.11 let X, ) be complete separable metric spaces. Show that if A is tight
on X and f: X — ) is continuous, then {f*u : u e A} is tight.
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5.1.3 On Infinite Horizon Wiener Space

Remark 5.1.12 In the above consideration we have taken the time interval in the
Wiener space being [0,T]. If it is R, we only need to consider the modulus of conti-
nuity up to each time [0, N]| where N € Ny.

To work with C(R;;RY), we take

Vi'(f)= sup  [f(t) — f(s)].

s,t€[0,N]:|t—s|<d

Proposition 5.1.13 (Arzela-Ascoli Theorem -II) A subset D of C(R,;RY) is relatively
compact if and only if:

(1) supep [ f(0)] < oo;

(2) For any N,

limsup V5" (f) = 0.
6—0 feD

Theorem 5.1.14 A family A c P(C([0,T];RY)) is tight if and only if the following holds:

(1) The set of measures {mjp: pe A} on R? is tight.

(2) For everye > 0,71 >0 and N € N, there exists a § with

sup u({V5" (f) = n}) <e.
ueA

The proof in the last theorem is as before except that we would take further in-
tersection in the construction of the relatively compact set: Let Cy. and dn ., be
numbers such that for all p,

u(lw(0)] > Cne) <27V e

and 1
W em(w) > —) <27 Nle,
m

Set
K. = nn{w(0)] < Cwve 0 Ky, )-

Then K. is compact and p(K¢) < e.
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5.1.4 Kolmogorov’'s Theorem -tightness

Since the modulus of continuity |f(s) — f(¢)| < sup,y, %\s —t|* < |flals — t]*, if
| f|a is uniformly bounded then the family is equi-continuous. The control the Holder
norm of the stochastic process we use Kolmogorov’'s theorem.

Theorem 5.1.15 [Kolmogorov’s Theorem for tightness] Let (X™) be a sequence of R%-
valued continuous processes such that

(1) The family of initial laws L(X{) is tight.

(2) There exists numbersp > 1,8 > 0,a > % such that ap > d and for every s,t € [0, N],
and every n,
| X8 = X{lp < Bls — %

then the set of laws of { X"} is weakly relatively compact.

Proof We only need to show that for any € > 0 and » > 0, there exist § and an integrer
no such that for n > ng,
Pn({Vs(w) = n}) <e.

Apply Markov-inequality for condition (2).

1
P( sup |X{—X{'| =) =P,({Vs(X") = n}) < ZE sup |X— X
|s—t|<6 T |s—t|<6

Recall Theorem [2.8.16| applied to (X{*),c[o,r: If for some a > 0, p > 1, and C > 0, the
following holds:

sup | XJ — X¢'[lp < Blt — 5|7,

s¥t

d

then for any y < a — 7,

Xn _ xXn
Sup| s t|

st |8 - t|’Y

Hp < BC.

Hence lim;_,o Esup|,_, 5| X{ — X{'[" = 0, completing the proof. ]

5.1.5 Applications

Definition 5.1.16 A sequence of continuous stochastic processes is said to converge
in distribution if their probability distributions on the Wiener space converge weakly.
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Lemma 5.1.17 Let f,,f : X — Y be measurable maps on Banach spaces and such
that f,(x,) — f(z) for any sequence x,, in X converging to x. Then f is continuous and
fn converges to f locally uniformly.

Proof Suppose that f has a discontinuity at z, then there eixsts 6 > 0 and y, — =
such that

|f(yn) — f(2)] = 6.
Let Ny = 1, and since f,,(yx) — f(yx)

N =inf{N > Ny_; : |fo(yr) — f(z)| = =,Vn = N} < 0.

N

Define z,, = y; if n € [Ny, Ni4+1) then z, — z. But |f,(z,) — f(z)| = % by the construc-
tion, contradicting with the assumption and proving that f must be a continuous
functions.

Suppose that f,, does nto converge locally uniformlly. Then for any relatively com-
pact set K, there exists § > 0 and z,, € K such that

| i (k) = ()] > 0.

Now z; has a convergent subsequence, which we denote by y;, with limit y. We have

| for (Yi) — fyr)| > 6.

Since f converges locally uniformlly, there exists N with |f(y,) — f(y)| < % for any
k> N and

|fnk<yk) - f(y)‘ > 5/27

contradicts the assumption. We have showed therefore for any K compact , any §
there exists N such tht |f,(z) — f(z)| < forall z € K. O

The following is an extension of the continuous mapping theorem given in Theo-
rem

Proposition 5.1.18 (Continuous Mapping Theorem) Let f,,f : X — ) be measur-
able maps between metric spaces such that f,(x,) — f(x) for any sequence z, in X
converging to z. If p,,p € P(X) with p, — p, Then (f,)«pun — f«p. In partricular, if &,
are random variables converging to £ in distribution, then f,(&,) converges to f(&) in
distribution.

Proof Denote v, = (f,)«un and v = f,u. By Portmanteau theorem it is sufficient to
show for any G < Y open,
lim infv, (G) = v(G).
n—ao0
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Fix such an open set G = ). For any = € f~1(G), there exists a neighbourhood U and
a number m such that for all k > m, f,(U) c G. Consequently, z = N (f.(G))°,
where the supersript denotes the interior of a set, in particular it is an open set. Thus,

F7HG) © Uiy 0 (171G
Consequently,
Feil(G) = u(f7HG)) < sup ke (7 1(G))%) < sup Hm inf i (AL, (1 (G))%))-
We have used p,, — p. Finally we obtain,
Fop(@) < SUpHm Inf (0 F (f7(6))%)) < an infp (£, () = B0 (s (),
which completes the proof. U
We reiterate the following theorem:

Theorem 5.1.19 Let X", X : Q — W% be measurable functions. Set XJ'(w) = X"(w)(t),
X (w) = X(w)(t). Suppose that (X™) converges in finite dimensional distribution to (X)
and if

limlim supP(V5(X™) =€) =0,

=0 nooo

then the stochastic processes converge weakly to X on W¢,

Proof Since X — X, in distribution, {X',n € N} is tight. Thus both conditions for
tightness hold. O

Let F denote the o-algebra on the Wiener space generated by the coordinate pro-
cess. Let [a] denote the integer part of the number a. Denote by M the set of
symmetric non-negative definite d x d matrices.

Theorem 5.1.20 Let X; : RY - R%, i = 0,1...,m, be bounded continuous, then for any
probability measure ;. on RY, there exists a solution to the martingale problem for L
where

% f
63:i6:vj

L
Lf(x)= 5 Z aij(z)

t,j=1

(aj) = XXT, and X = (X',...,X™).

d
@)+ 3 o) 2L (@),
ke

1 ﬁxk

Proof Consider the canonical probability space (2, F,P) and the standard filtration
from the coordinate process, on which we have a random variable X, with distribution
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1, and an independent Brownian motion B on R?. We define an approximation for
dre = Xo(x)dt + X0 | Xi(z1)dWF as follows. Define for ¢ € (0, €]:

¢ ¢
xy =xo + J Xo(zo)ds + ZJ X (z0)dW,
0 — Jo

On (¢, 2¢] define,
t
x§=x§+fxo( ds+2ka €))dWE,

and iteratedly we defien z{ for all t. For any ¢ > 0 and any path v € C(R,,R?), we
define: the time dependent vector fields X[ (t,~) as folllows:

5
f(ty) =D X L(je,(j+1) (t)-
j=1
Then z§ solvs:
93,5—$0+on kasa: de
Write y ) .
i) =5 3, alylonsd) 9 LUl )

Denote by P¢ the law of z¢ on the Wiener space, then

J(xf) — f(xo) — L LEf(2)ds

is a martingale.

Take € = % we change all indices from ¢ to n. We show that P" is weakly relatively
compact. Firstly, condition (1) is satisfied. Condition (2) follows by BDG inequality.
For any n, and 6 > 0,s > 0,

E sup |z" — 2", [P < 5%.
0<r<d

For any p > 1, we choose p > d to obtain the tightness of P".

Then there exists a sequence z™* that converges weakly to some process z. For
simplicity we denote the sub-sequence by 2" as well, and suppose that z" converges
weakly to a stochastic process z. We denote its distribution on W9 by P.

Take a smooth and compactly supported function f, s < t, and g : C([0, s];R?%) — R.
We want to show that

E[(f(xt) ~ flx) — f ,Cs(s,xr)dr)g(x)] —0.



5.1. WEAK CONVERGENCE 132

We already know that, for each n,

B(f(e) — )~ [ £26.air)o(a) = 0.

We invoke the continuous mapping theorem. Write:

t

807) = (£00) = F0) = | Lals.7)dr)g(2),

s

and .
8,07 = (£07) = 102 = || £3(sa)dr) o),

Note that for fixed time interval, If 4" — «, ®,(y,) — ®(7). If 2" — z in W% in distribu-
tion, then @, (2") — ®(x) in distribution, it follows from the boundedness of ®,, that
E[®(x) = lim,—,o E[®,,(2™)] = 0, so P solves the martingale problem. O

Remark 5.1.21 If we know the martingale problem has at most one solution, then
the limiting point would be unique, and this woulld be the weak limit of the processes
X" (the weak limit does exist in this case).

Theorem 5.1.22 |[Billingsley, pp.83] Suppose that0 =ty <t; <--- <ty =1 and

min (ti — tifl) = 0.
l<i<k

Then for any f : [0,T] — R?,

Vi(0) <3max sup |[f(s)— f(ti-1)]

1<i<k g lti1,ti]

and _for any probability measure P,

k
P(V;(5) = 3¢) < D P( sup [f(s) — f(ti1)] = o).

i=1  s€lti—1,ti]

Proof Let M = 3maxXi<;<k SUPypy, , 4 |2(s) — 2(ti-1)|. If [s —t[ < 4, then they either
belong to the same sub-interval [¢;,t,11], in which case

[z(s) —2(t)] < [o(s) = 2(t)| + [x(t:) — z(8)] < 2M,
[t

ot they lie in adjacent intervals, s € [t;_1,t;] and ¢ € [t;,t;41]. In the latter case,

[2(s) —2(t)| < |z(s) — z(tim1)| + |2(t:) — —2(tim)| + [2(t:) — z()] < 3M,

showing V(6) < 3M. Finally, Vy(6) > 3e implies that maxi<i<k SUP, | 4,1 17(s) —
z(t;—1)| = €, and the last inequality holds.

O
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Lemma 5.1.23 [16, pp 517, Lemma (1.7), Chapter 13]. Consider a sequence {P,} from
P(X). Condition (2) of Theorem/|5.1.14| is implied by the following condition:

For any N, ¢,n > 0 there exists a number ¢ € (0,1) and ny such that

%Pn({w i) sup |(w(s) —w(t)] =n}) <e

t<s<t+6

foranyn = ng, and allt € [0, N].

Proof Want to show that for every e there exists a § > 0 such that

}Simlim sup P, (Vs(z) =€) = 0.

-0 pnooo
Let n > 0, and € > 0, then there exists ¢ € (0, 1), such that

Ipo( sup |u(s) —a(tin)| = 5) <

n
selt,t44] N

W m

By the previous theorem, taking ¢; = iJ, where i < [N/J].

[N/d]
Bu(Vs(f) = ) < Y Pu( sup la(s) —a(tios A N)| >

i=1 s€[t;—1,t;]

) <|

asserting the statement. ]

Given a sequence of mean zero identically distributed real valued random variables
&, with variance o2. Set

So=0,  Su= ) &.
k=1

Let X"(w) be defined by fixing its values at % to be : X" (w) = i\(/“%) and linear interpo-
lations between values at % Namely X" (w) is a continuous piecewise linear function

given by

’(i+1)].

n

Sty (W) i1 (w)
o\/n oyn

Lemma 5.1.24 [Billingsley, pp. 88] Suppose that {X,} is stationary, and

XP=0, X"(t)(w)=

3|~

+ (nt — [nt]) tel

lim lim sup A’P(max |S;| = Aov/n) = 0.

Then { X"} is tight.
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Proof We want to show that for any ¢ > 0, there exists § such that

lim supP(Vs5(X"™) = 3¢) — 0.
n—oo
By the previous lemmas, Lemma [5.1.22] for a partition of [0,1], 0 =ty <t; <--- <ty =
1, of size § > 0,
Vxn(d) <3 max sup [X"(s)— X"(ti—1)|-
ISISN seft; ] Z

Applying Lemma [5.1.22| and a brutal estimate of the supremum by the sum:

POG(X) >3 < F(max, sup |X"(5) = X"(1i-1)| >
v ti—1,t;

< > P( sup [X"(s) = X"(ti-1)| = ).

1<i<N  S€[ti-1,ti]

By the definition, X" is obtained by interpolation on sub-intervals of size % We
shall first take n — oo, then take § to infinity. Thus we may assume that % is small.
Denote by m the maximal number of sub-intervals of size 1 that fit into [t;,¢;11]. then

= [én] so 0 ~ .

If s €[t;,tit1], where t; = id ~ “2, suppose that s € [(mi + k)/n, (mi + k + 1)/n]. Thus

X"(t;) ~ ’"\Z/(i") and X ~= S’"ﬁ/’“ﬁ() and we have
n nipy _ Smi+k(w) . gmi-‘rk-i-l(w) Sml(w> s gmi-i-k(w)
X"(s) — X"(t;) = o/ + (ns —im + k) o/ s (nt; Zm)io'\/ﬁ .
_ Smi+k(w) sz(w) )
NG o\/n T,
where the error term R; = (ns —im + k)g’”’;ki\/%(w) — (nt; — zm)% has mean zero

variance less or qual to ﬁ We have used the fast that ¢; is a stationary sequence:

SmHk(w) _ sz(w) (liw) Sk(w)
o\/n o\/n oy/n’

the latter does not depend on i. Put all together, we have

|Sk(w )I € €
P(V5(X™) = 3e) < P( sup > 7) + P(|Ri| = =).

The second term is controlled by >}, ;. 642 —5.3, where keeping k ~ 5 ﬁxed converges
to zero as n — . We now put this into the content of our assumptlon.

Jim lim sup MNP (rl?ax |Sk| = Aow/n) = 0.

A—0  psoo
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It remains to work

>, B( sup [Si|>Sovn) = SB( sup S| > Sovn).

l<ieN  1<k<m+1 I<k<m+1

SH| =

Set A = §, /-2, recall that m = [2], so 2 < 2 < £\2. Then

§)\2[P’( sup |Sk| = A-ovm+1),

1
P( sup [Si = Sovi) < 5
0 l<k<m+1 2 € 1<k<m+1
which, by the assumption, converges to zero as A — oo, completing the proof. O

Before proceeding further we recall the following inequality:

Lemma 5.1.25 (Etemai’s inequality) Let {{;} be independent random variables, and
Sk = Zf;l &;. Then for any number a > 0,

P( max |Sk| = 3a) < 3 max P(|Sk| = a).
1<k<m 1<k<m

Lemma 5.1.26 The conditions of Lemma is satisfied by {X"}.

Proof For any ) > 0, we want to show that

lim lim sup A?P(max |Sy| = Aov/n) = 0.
A—>0 oo k<n

By Etemadi, it is sufficient to show that

lim lim sup A\ maxP|S,| > Aov/n) = 0.
A—0 p—oo k<n

Since aLjE — N(0,1), denoting n such a standard Gaussian random variable. For
Gaussian random variable,

E[n']
N\
We may choose kq such that for & > ko, the error between P|Sy| > Aoy/n) and P(|n| = A)

is small. For sufficiently large n, we may assume that ky < n. For k > ko,

P(|n| = \) < =3\

4
P|Sk| = Aov/n) < P|Sp| = AovVEk) < A4+ P(|n] = \) < e

For k < kg < n,

E[Sk|> ko
P‘Sk| 2 )\O’\/ﬁ) < AQUQTL = %

Overall,

ko 4
A2p’ A4
as n — oo, proving the desired inequality. ]

P(|Sk| = Aov/n) < max( )—0
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Proposition 5.1.27 (Donsker’s theorem /Invariance Principle) Given a sequence of
mean zero independent identically distributed real valued random variables &, with
variance o?. Set

So=0,  Sp=) &
k=1
Then X", where it is defined by piecewise interpolation by

St (w) it +1(w)
o\/n oyn

converges in distribution to the standard Brownian motion.

Xi'(w) = + (nt — [nt])

Proof Since {X",n € N} is relatively compact ,by Lemma |5.1.26] it remains to identify

the limiting distributions. Observe that [’;L—t] — t, it follows by Markov-Chebeshev

inequality that

Ene)+1
o\/n

By the central limit theorem, X;' converges to the standard normal distribution for

every t. To obtain convergence in distribution of the stochastic process, we work with

their increments:

R, (t) := (nt — [nt]) — 0.

1 g 1
U\/ﬁ [ns]aa\/ﬁ

Now (=== S[ns], ﬁ(S[m] — S[ns])) — (N1, N2), where (N1, Np) are independent standard
normal distribution with variance s and ¢ — s respectively. By the continuous mapping
theorem

(X;lath - X;l) = ( (S[nt] - S[ns])) + (RTSL?R? - RZ))

( 1 g 1
NN
Since (R?, R} — R?) — (0,0) in probability,

(Spne)) — (N1, N1+ Na).

(X;lanl) - (N17N1 +N2)'
Similarly one observe that as n — oo,
(X?NXIZ — XtTi, . ,XZZ — XtT;chl) — (Bt17Bt2 — Bt17 . .,Btk — Btk—l)

in law where B is a one dimensional Brownian motion. Consequently, as n — o, (X}")

converges in distribution to a Brownian motion. O
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5.1.6 Cadlag processes

We briefly discuss the analogue for the space D, of Cadlag processes. Such processes
has at mostly countable number of discontinuity, and there can be at most a finite
number of points at which the jump exceeds a certain given size. Consequently,
sup, | f(t)| < o for f e D.

Define for any interval I:

V(f, 1) = sup |f(s) — f(1)]-

s,t,el

Since Cadlg functions are only right continuous, we are interested in intervals of the
form [s, ). The idea is to take t to be one of the point of discontinuity thus introducing
special partitions of [0, 1].

Let us consider d-sparse sets: this is a finite collection of points {¢;} with
min(t; —t;—1) > 0.
For 0 < 6 < 1, define

Vi(f) = inf — f(®)].
5(f) 5fspg;se{ti}mglxsvt;:j£+l)!f(s) f(@)]

The infimum is taken over all §-spare sets {¢;}. Then,
lim V{(f) =
Lim V5(f) =0

is necessary and sufficient for a function f to belong to D. The idea is that we can
choose a d-sparse set containing the points of discontinuous. One can define a metric
on D as follows.

Definition 5.1.28 Let A be a set consisting of strictly increasing and continuous
mapping from [0,1] onto [0,1] with A(0) = 0 and limyq A(t) = co. A function in A is
referred as a time change.

Its possible to define a metric with
d(f,g) = /i\nf(sup IA(t) —t| + |foA—gleo}-
eA t

This defines a (incomplete) metric on D. Then D is a separable Polish space. (By
Polish we mean that there exists a complete metric inducing the same topology).

Definition 5.1.29 The Skorohod topology, on the cadlag space D(R,;R?), is charac-
terised by the following convergence. A sequence f, — f if and only if there exists a
sequence )\, € A with the following holds:
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o sup, [A(t) =] — 0
* sup,y |fno Ay — f| — 0for all N.

Proposition 5.1.30 If f is a continuous function, then a sequence f, € D converge in
the Skorohod topology if and only if they converge locally uniformly.

Proof To see this note that

[F(t) = F@OI < fnoAn 0 A (1) = Fo A (B +f 0 A () = (1)
Note that if the distance between A and the identity map is less than 1, then

sup |fu(t) o dn o A7) = fo M) < sup |fuoAn(t) = f(1)] =0,
te[0,N] te[0,N+1]

by the convergence in D. Also by the uniform continuity of f,

Im > [for (1)~ f(1)] -0,

te[0,N]

concluding the proof for the assertion. ]

Theorem 5.1.31 A necessary and sufficient condition for a set in P(X) to be relatively
compact is that:

sup | f[ < oo
feA

and

lim sup Vy(f) = 0.
6—0 feA

To identify the limit, we only need to show the convergence of the finite dimensional
distributions (with times in 7p: the collection of points for which the projection m; os
continuous except for a set of P-measure zero). It is sufficient to identify the limit on
a dense subset of [0,7T].

An interesting concept is C-tight.

Definition 5.1.32 A sequence of stochastic processes X" is C-tight if it is tight and
that all limit point of the sequence are probability distributions of a continuous pro-
cess, in other words these probability distribution has full measure on the Wiener
space.

This allows to discuss the convergence of discontinuous processes and obtaining
another version of Donsker’s type theorem for

1
ovn Slnt]-



Chapter 6

Ergodic Theorems

6.0.1 The adjoint operator

Let £ denote the generator of a Markov process. If 7 is an invariant probability mea-
sure, then {7} fdr = § fdr. If f is in the domain of its generator and if we can exchange
the order of integration and differentiation, then {£fdr = 0. This procedure usually
holds for f € C%. If the invariant measure is of the form dr = ¢ dr where o : X — R is
a density function, and if £* denote the L?-adjoint of £, then formally, §, fL*odz = 0.
Hence we often look for a solution of £*p = 0 and then proceed to show pdz is an
invariant measure.

Example 6.0.1 If
d d
1 0?
Lf= 2 Z AP ij Z ),
i,7=1 k=1
Then for any C? function f with compact support and any function g, we may apply
integration by parts formula:

g (92 (@i j9)
Lfgdr = — ffdx—ffgdwbdﬁ § Jf J
J dri0x;j

Hence

d d 5
r dg 1 da; 69 1 0%a;;
" b 2 E E 5 “_ gdivb.
/ g 1 Ozy, ) i 81‘ 8:1: 0x; ﬁwj 2 0x;0x; g

Zv

For compact manifolds, if £ is smooth and strictly elliptic, then it has a unique
invariant probability measure. This follows from the fact that the semi-group is strong
Feller.

139
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Example 6.0.2 Let £f(z) = a(z)f"(z) + b(z) f'(z)dz, then

| £tods = | 1270tz = [ 100 @) + 5 (a0)ds,

Formally, ¢ satisfies,

1 1
§ag" + (a' = b)o + (ia” —b)o=0.

6.1 [’-Semigroups and Invariant Measure

Let X be a separable complete metric space. Let E be a closed subspace of 5,(X).

Suppose that £ generates a strongly continuous contraction semi-group 7; on E
and F is separating, then any solution X; to the martingale problem for £ with initial
distribution y is a Markov process for 7; and

E[f(Xt-i-s) | Jrs] = th(Xs) (61)

for any f € E. See Theorem 4.1 in [3, pp182]. Furthermore uniqueness holds for the
martingale problem for £ with the initial distribution px.

We introduce two examples of strongly continuous semi-groups on L”.

Lemma 6.1.1 * (Minkowski’s integral inequality) Let f : R™ x R be measurable.

Then, for1 < p < oo,
» N\ !
dm) < f (f ]f(m,y)]pdx> dy.

(e
< | 1l

f(z,y)dy
R

In other words,

[ y)dy
-

p

* (Young Inequality) Let f, K : R" — R be measurable, f € L? and K € L'. Then the
convolution f = K isin LP forany 1 < p < oo:

I+ Kllp < [flp[ K-

Example 6.1.2 For the heat semi-group, we already have a transition semi-group,
we are only concerned with a space on which 7; is a strongly continuous semi-group.
Indeed, on LP n Ly, |Pif], < | f]p. by the Young inequality. The heat semigroup thus
extends to a semi-group on L, by the contraction property and the fact that C}% is
dense in LP.
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To show the semi-group on L, is strongly continuous, first let f be smooth with
compact support. For any ¢ > 0 choose § > 0 so |f(z) — f(y)| < ¢/2 for |x —y| < § and let
K(z) = P(0,x).

€
< - +2

m@xﬂx—m—fm»@\

R"

1 _w?
——pt
ly|=6 /27t ©

for t sufficiently small, () — f(z)] — 0 for such f. Since |P,f — f| is uniformly
bounded in L? for any p, then the convergence is in LP. For f € LP, choose f, — f in
LP and f,, smooth with compact supports, then

\Eef = fllp < |Bef = Pefulp + |Pefn = fulp + [fn = flp = 0.

Let X be a Markov process on X with transition semi-group 7; on B;(X). Recall
that a probability measure 7 on X is called invariant for X if

Jth m(dx) Jf

Lemma 6.1.3 Let 7 € P(X) be an invariant measure for a right-continuous sample
paths Markov process X. Then (T;) extends to a Markouv transition semigroup on LP (X, )
Jorany p > 1. Furthermore T; is a positive preserving strongly continuous contraction on
LP(X, ).

forall ¢ > 0 and f € By(X).

Proof Let f € LP(X,7) N L. Then |T1f|P = |§ f(y)Pi(z,dy)[” < T3| f|P by Jensen’s inequal-
ity, whence

UEﬂmp—jnﬂ%dm fnuw><>=uﬂmﬂ

since 7 is invariant. The set of continuous compactly supported functions is dense
in LP, so T; extends to a contraction semigroup on L?(X, 7). By the right-continuity
of the process, T;f(x) — f(z) ast — 0 for any f € BC(X) n Ly, |T;f — f|lr» — 0 by the
dominated convergence, and this holds for any f € LP(X,n) since BC(X) is a dense
subspace of LP(X, 7). The semigroup on L? inherits the positive preserving property.

U

6.2 Characterisation of Invariant Measures

The following theorem unifies several notions of invariant measures, see [3, pp239].
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Theorem 6.2.1 Suppose that L generates a strongly continuous contraction semi-group
T, on F and E is measure determining (B, is dense in E), and the martingale problem for
L is well posed. Let (right continuous) process X; be the solution for the martingale prob-
lem for £ with the initial condition m. Then the following is equivalent for a probability
measure T.

1. The distribution of X, is u for all time t > 0.
2. 0;X and X have the same finite dimensional distributions.
3. §,T,f dn = §, f dm, for every f € E,t > 0.

4. §, Lfdr =0 for any f € Dom(L).
Proof

¢ (ii) obviously implies (i).

* (i) = (ii) If £L(X};) = 7 for some ¢ > 0, then #; X is a solution of the martingale prob-
lem with the initial value 7 also. By the uniqueness to the martingale problem,
the process 6, X and X have the same probability distributions.

* (if) — (iii) Let f € E, according to (6.1),
f T (2)ude) = BLF(X))] = Ef(0.,X,) = f Ty of (1)l d).

e (iii) = (i) The above shows that E[f(X;)] = Ef(X;+s)) for any f € E. Since FE is
measure determining, £(X;) = £(X¢4s).

* (iii) = (iv) is immediate from the definition of the generator.

* (iv) = (iii), for f e D(L),

JX(th — f)dm = L{ Lt %Tsf dsdm = L{ j: LT, f dsdm,

the right hand side equals
t
f E(f Tsfds) dm = 0.
X 0

By density of D(£) in E, §,(T.f — f)dr = 0 for every f € E and every ¢ > 0.

This completes the proof. (]
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6.2.1 Lyapunov Function Technique

In the content of the theorem below, a Lyapunov function is a function with £V <
K —cV.

Note that if V is twice Contlnuous then by It6’s formula, V() So LV (xzs)ds is a
local martingale. If LV < K — ¢V, V(xy) So V(zs))ds is expected to be a super-
martingale.

Definition 6.2.2 Let z; denote a Markov process with generator £. A measurable
functions is said to satisfy that LV < K — ¢V, if

V() — J (K — V) () 6.2)

0

is a super-martingale, for every starting point zy. In this content, we say V is a
Lyapunov function.

Depending on the problem we also introduce a weighted supremum norm:

()]

lellvy = sup TV()

A version of the following theorem can be found [7, Thm. 3.6]

Theorem 6.2.3 Let T, be a Markov semi-group on By(X) with generator L. Suppose
that the following hold:

* There exists a measurable function V : X — R, such that LV < K — ¢V for some
positive constants ¢ and K.

* For every R > 0, there exists a constant a > 0, and a positive number t,, such that
the transition kernels satisfy:

| Pro () = Pio (y, ) [7v < 2(1 — )

forallz,ye{V(x)+V(y) < R}.

Then, the Markov process has a unique invariant probability measure m and there exists
C >0 and g€ (0,1) such that for every measurable function ¢ with |¢| < oo,

I Tye — @llv < Ce %o — 3|y

where ¢ = § pdr.
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Proof There exists a corresponding theorem for discrete time Markov processes in [7,
Thm. 3.6] in Convergence of Markov processes. Applying that theorems to P = 7}, we
see that there exists an unique invariant probability i such that (7},,)«u = p for every
n, It follows immediately that 7; has at most one invariant measure. Furthermore,

|Tatoe — @llv < Ce | — @llv.

Now for any ¢, written as ¢t = tom + a where a € [0,#)). Then assuming ¢ = 0 for
simplicity of notation,

ITeply = 1TgmTi-tomellv < Ce™ | Tiztymelly < Ce™ o]y,

proving the estimate for the time continuous case. O

Example 6.2.4 Consider Lf(z) = —bzf'(z) + 1 f"(z),

dry = —bxidt + dW;.

It is immediate that the Gaussian measure = = N (0, ﬁ) is an invariant probability

measure. The transition probability P;(z,-) is Gaussian with center e ** and variance
§; e 2=*)ds. In fact, the solutions are

t
Fy(z) = e b —&—J e blt=s)dWs,
0
Its probability law is Gaussian with center e "zy and variance o(t)? = L (1 — e~2),

which converges to % For any bounded measurable function f:

Pif(x) = 1@) f e T f(y)dy.

2ro

This is a strong Feller semi-group, and P, f converges to

f fdr = \/E J el gy,

The transition densities P;(x,-) and P.(y,-) have an overlap, their total variation dis-
tance is smaller than 2, so the conditions of the theorem hold with the Lyapunov
function V(z) = |z|2. If we take the initial condition

¢
J e*dWs,
—0

which is independent of (W;,t > 0), we see that the solution in invariant.

It is known that the set of invariant probability measures for a Feller Markov process
is a closed convex hull and the extreme measures, rather the invariant probability
measures induced on the path space with the extreme measure as its marginal dis-
tributions, are ergodic invariant measures in the sense that the shift invariant sets
have measure 0 or 1.



Chapter 7

Discrete time Markov processes

7.0.1 Lyapunov Function test

One simple way of checking that the tightness condition of the Krylov-Bogoliubov
theorem holds is to find a so-called Lyapunov function for the system. A Lyapunov
function is allowed to take thev value +c. We clarify what does it mean to integrate
a function that might take the value +o. Let &y = {z : V(z) < o}. If © is a measure
on X with u(Xp) = 1, we define {, Vdu = {, Vdu, otherwise we set {, Vdu = . In
particular the assumption that TV (z) < vV (z) + C implies that P(z, Xy) = 1 for every =
with V(z) < o0.

Lemma 7.0.1 Let P be a transition function on X and let V: X — R, u {0} be a Borel
measurable function. Suppose there exist a positive constant v € (0,1) and a constant
C > 0 such that

TV(z) <yV(z)+C,

for every x such that V (z) # . Then

T"V(x) <"V (z) + 12'7 (7.1)

Proof This is a simple consequence of the Chapman-Kolmogorov equations:

TV (2) = L V(y) Pz, dy) = L TV (y) P" (z, dy) = L L V() Pz, dy) Pz, d2)
<C+ yf V(z) P YNa,dz) < ...
X
SCH+Cy+...+CY"+~4"V(x) <7”V(m)+1gy,

145
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completing the proof. ]

Typically, V(z) = |z|P or V(z) = log |z
Note the following:

, etc... These allow us to control E|z,|P etc.

e If V is bounded EV(xz,) < « provides no information on tightness of the law of

To avoid this assume V~1([0,a]) := {y : V(y) < a} is compact.

* We can allow V' = +oo where z,, does not visit. But V' should not be +w every-
where, i.e. V-I(R,) # ¢.

Definition 7.0.2 Let X be a complete separable metric space and let P be a transition
probability on X. A Borel measurable function V: X — Ry u {0} is called a Lyapunov
function for P if it satisfies the following conditions:

L VI(RY) 4 ¢
2. For every a € R, the set {y: V(y) < a} is compact.
3. There exist a positive constant v < 1 and a constant C' such that
TV(2) = J V(y) Pa,dy) <4V (x) + C.,
X

for every = such that V(x) # oo.

With this definition at hand, it is now easy to prove the following results.

Theorem 7.0.3 (Lyapunov function test) If a transition probability P is Feller and
admits a Lyapunov function, then it has an invariant probability measure.

Proof Let zy € X be any point such that V(zy) # o, we show that the sequence of
measures {P"(xo,-)} is tight. For every a > 0, let K, = {y|V (y) < a}, a compact set. By
the lemma above,

TV (z9) = J VP"(z,dy) <"V (x) + L
x -
Tchebycheff's inequality shows that
14 1
Peo ()Y = [ P < [ T prgay) < Lrnvia)
{V(y)>a} {Vy)>a} @ a

<L Viao) + 7o)
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We have used Lemma and the fact that v < 1. The results follows from conver-
gence of the right hand side, as a — oo, with rate uniform in n. (More precisely, for
every ¢ > (0 we can now choose a > %(V(wo) + %) then P"(z,K,) > 1 — ¢ for every
n > 0.) We can now use Krylov-Bogoliubov theorem to conclude. (]

The proof the previous theorem suggests that a Lyapunov function V for 7" allows
us to deduce information on its invariant measures. E.g. if V(z) = |z|> we expect to
deduce that = has second moment and the second moment bound C/(1 — v), where C
and v are the constants appearing in (7.1I). This is indeed the case, as shown by the
following proposition:

Proposition 7.0.4 Let P be a transition probability on X and let V: X — R, be a
measurable function such that there exist constants v € (0,1) and C > 0 with

JX V(y) P(z,dy) <~V (x)+ C.

Then, every invariant measure 7 _for P satisfies

C
f V() w(dz) < —C— |
X -~
Proof Let M > 0 be an arbitrary constant. As a shorthand, we will use the notation
a A b to denote the minimum between two numbers ¢ and b. Let V)y = V A M. For
every n > 0, one then has the following chain of inequalities:

f Vig () m(de) = J Var(e) (T7) (de) = f TV () m(dec)
X X

X

<[ vt + 12

) m(dx)

We have used Jensen’s inequality. Since the function on the right hand side is
bounded by M, we can apply the Lebesgue dominated convergence theorem. It yields
the bound

f (V(z) A M) m(dz) < C ,
x -y
which holds uniformly in A/, and the result follows. ]

We complete this section with a couple of inequalities which can be handy for
applying Lyapunov function methods.

Lemma 7.0.5 Foranyp > 1 and any § > 0 there exists a constant K > 1 such that
1 +zP < K|z +1+4.

Note that if x < 0,

z+ 1P <1+ |zP.
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Proof This is clear if x < 0. For p an integer, this can also be obtained by apply
Young’s inequality to terms |z|” |y[?~? in the expansion of |z + y|’.

Now we assume =z > 0. Let f(z) = |1 + z|P. Let g(x) = Klz|’ + 1 + 6. Note that
g(0) > f(0). If f(z) = g(x) for some z, then by the intermediate value theorem there
exists a point where they have equal value. Let xy be the first point they are equal.
Then zyp > 0. Choose K = (|W + 1|p). Then f(z) = |x|p<|ﬁ + 1|p> < KlzP for any
T = Xg.

Young's inequality: for any «, 8 > 0 with L + 4 =1,

o B
r v
« Beb

7.0.2 Application to a random dynamical system

In this section, let (z,) be a Markov process defined by a recursion relation of the type
Tp+1 = F($na§n) ’ (72)

for {&,} a sequence of independent and identically distributed random variables taking
values in a measurable space ), and all independent of xy, and F': X x ) — X a Borel
measurable function. Then for any V € B,(X),

TV(x) = E[V(F(2,&n))]-

An effective criteria for the transition probabilities to be Feller is as follows:
Theorem 7.0.6 Let (z,,) be a Markov process defined by a recursion relation of the type

Tnp+l1 = F(xnafn) s

Jor {£,} a sequence of i.i.d. random variables taking values in a measurable space )
and F: X x Y — X. If the function F(-,&,): X — X is continuous for almost every
realisation of ¢ (If A is the set of y such that x — F(xz,y) is continuous, then the property
that P(¢, € A) = 1 does not depend on n.), then the corresponding transition semigroup
is Feller.

Proof Denote by P the law of &, on Y and by ¢: X — X an arbitrary continuous
bounded function. It follows from the definition of the transition semigroup 7" that

(Te)(x) = E(@(zn1) | 2n = ) = Bp(F(z,£,)) = L o(F(z,y)) P(dy) .
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Let now {z,} be a sequence of elements in X’ converging to z. Lebesgue’s dominated
convergence theorem shows that

lim (Tp) (20) = Hm | o(F(z0,9)) P(dy) = f Lim ¢ (F (20, y)) B(dy)
= | el Cw) B = (T
which implies that T'¢ is continuous and therefore that 7" is Feller. OJ

If F is continuous in the first variable for each y, then the Markov process is Feller.

Theorem 7.0.7 Suppose that the function F(-,&,): X — X is continuous for almost
every realisation of &,. If, furthermore, there exists a Borel measurable functionV: X —
R with compact sub-level sets and constants -y € (0,1) and C > 0 such that

L V(F(e,y) P(dy) < V(2) +C . VaoeX,

where P is the distribution of &,,, then the process z has at least one invariant probability
measure.

Proof Indeed,
Pz, A) = E(z1 € Alzg = 2) = E(F(z0, &) € Alwo — 7) — J1A(F(x,y))15(dy).

Then P is Feller follows from Theorem Then the left hand side of the given in-
equality is TV and V is a Lyapunov function. The existence of an invariant probability
measure now follows from the Lyapunov function test. ]



Chapter 8

Ergodic Theorem

8.1 Ergodic Theorems

In this small section we introduce/recall some core notions of dynamical systems,
these will connect to stationary Markov process viewed on the canonical path space
C(R,,X). A Markov chain will be viewed to be on AN or two-sided path space XZ.

Definition 8.1.1 A dynamical system consists of a probability space (2, F,P) and a
measure preserving measurable map 6: 2 — Q, i.e. a map such that P(6=1(4)) = P(A)
for every A e F (i.e. 0,.P =P).

Definition 8.1.2 Given a measurable transformation # on (2, F,P), a set with =1(A) =
A is called an invariant set for ¢ (or f-invariant). Then the invariant c-algebra Z c F
is defined as

IT={AeF : 071(A) = A}.

It is clear that Z is again a o-algebra. In order to emphasise the invariance with
respect to ¢, we may refer an invariant set as a ¢-invariant set.

Definition 8.1.3 A measurable function f : 2 — R is said to be #-invariant (or simply
invariant) if fof = f.

Exercise 8.1.4 Let f : 2 — R be an F- measurable function. Then f is invariant if
and only if f is measurable with respect to the invariant o-algebra 7.

Definition 8.1.5 Given a dynamical system (2, 7,P) and 6. We say ¢ is ergodic if any
f-invariant set has either measure 0 or measure 1. Note that this is a property of the
map ¢ as well as of the measure P. We also say P is ergodic (w.r.t. 6).

150
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Proposition 8.1.6 The following statements are equivalent.

1. P is ergodic (0 is ergodic);
2. Every invariant integrable function f is almost surely a constant.

3. Every invariant bounded function is almost surely a constant.

Proof From (2) to (3) is trivial. It remains to show (3) = (1), and (1) = (2).

(3) = (1). Assume that (3) holds. Let f = 14 where A is an invariant set. Then 14
in invariant and 14 = 1 or 0 a.e., hence 14 = P(A) € {0,1} and P is ergodic.

(1) = (2). Suppose that P is ergodic, i.e. P(4) =1 or 0 for any A € Z. Let function
f be integrable and invariant, then f is measurable with respect to Z E] We prove that
f=Ef a.e. . Note that the following sets

Ay = {weQ|fw) >Ef}, A —{weQ|fw) <Eff, Ao—{weQ|fw)=-Ef}

are invariant sets and form a partition of Q2. Therefore, by ergodicity, exactly one of
them has measure 1 and the other two must have measure 0. Suppose P(A;) = 1,
then

0= (r-Efar- L+(f —Ef)dP.

Then f —Ef = 0 a.s. on A, which is a contradiction. Similarly if P(A_) = 1, we also
have f = Ef a.e., hence we must have P(4,) = 1. ]

Theorem 8.1.7 (Birkhoff’s Ergodic Theorem) Let (2, F,P,0,7) be as above and let
f: Q — R be such that E|f| < co. Then,

1 n
m@N;Oﬂe w) =E(f|I)

almost surely.
Let 6 be the shift operator on X%, i.e. 6(z.)(n) = z(n + 1), so that
(6nz)(m) = z(n+m),

and we write § = §; and §~! = §_;. As in previous section, we denote by 7 the set of all
measurable subsets of X% that are invariant under #,

I={CeBX*:6071C=C}.

!See Exercise 3 of Problem Sheet 8.
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Also let P = (P(z,-),z € X) be a family of transition probabilities and a probability
measure 7 € P(X) satisfying = = . P(z,-)n(dx).

By the definition of stationarity, one has:

Lemma 8.1.8 The triple (X%, B(X?),P,,0) defines a dynamical system, and 0 is contin-
uous (This is called a continuous dynamical system).

Proof We have already seen that 6 is P,-invariant . It is clear that 6 is continuous
(with respect to the product topology). The product topology is the coarsest topology
such that each projection map 7; : IIX — X is continuous. We only need to test with
open sets of the form 7; *(U). It is clear that §~!(x; }(U)) is an open set. ]

Remember that the measure P, is ergodic if every A € 7 has P.(4) € {0, 1}.

Definition 8.1.9 We say that an invariant measure 7 of a Markov process with asso-
ciated transition semigroup 7' is ergodic if the corresponding measure P, is ergodic
for 6.

Theorem 8.1.10 Let P = P(x,-) be a transition probability with an invariant probability
measure w. Let (x,,)nez be a time homogeneous Markov process with t.p. P and initial
position xg = z. Then for m-almost every x € X, the following statements hold:

1. For any integrable function f : X2 — R,

SRS

Zn: f(0*z (w)) converges for P-a.e. w.

2. If furthermore w is ergodic,

ié f(0*z (w) =2 jdeP’ P-a.e. w.

Proof There are many proofs for this, here we illustrate the use of stopping times.
First let o ~ 7 (then the Markov chain with initial condition z( is stationary). By
Theorem ??, we have

N fte) —  fz), Pae w.
k=1

S

Then by the dominated convergence theorem

Zf&k | o(zo)| 5 E[f(z)|o(z0)], P-ae. w.
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From this we deduce that for w-almost every z,
1 3 k n—oo r
E —Zf(ﬁ z)|wo=z| > E[f(z)lzo=2z] P-ae w.
n
k=1

This can be seen by testing the conditional expectation in the previous line with func-
tions of the form ¢(xy) and turn the expectation into integration with respect to xz.
L]

8.2 Structure Theorem

Let T be the transition operator for a Markov chain, Ip = {w € P(X) : Tw = n} denote
the set of invariant probability measures. It is a convex set: If m; and 7 are in Ip,
then any of their convex combination is in Ip also.

If T is Feller, then it is a continuous map from P(X) to P(&X) in the topology of
weak convergence. Therefore, if 7, is a sequence of invariant probability measures
converging weakly to a limit =, one has

Tnr=1T1lmmn, = lim Tr, = limr, =7,

n—o0 n—o0 n—o0
so that 7 is again an invariant probability measure for P. This shows that if T is
Feller, then the set Ip is closed (in the topology of weak convergence).

Definition 8.2.1 A probability measure 7 € Ip is an extremal, of Ip, if 7 cannot be
decomposed as m = tm + (1 — t)me with ¢t € (0,1) and =; € Ip are distinct.

Theorem 8.2.2 Given a time homogeneous transition probability P, with corresponding
transition operator T. With Ip denoting the set of probability measures invariant w.r.t.
P, set

E={neP(X) : Tr=m, wisergodic} c Ip.

Then the following statements hold.
(a) The set Ip is convex and £ is precisely the set of its extremal points.

(b) Any two ergodic invariant probability measures are either identical or mutually
singular.

(c) Furthermore, every invariant probability measure © € Ip is a convex combination
of ergodic invariant probability measures, i.e. for every invariant measure j € Z,
there exists a probability measure Q,, on £ such that

p(A) = | v) Qu(a)
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Remark 8.2.3 As a consequence, if a Markov process admits more than one invariant
measure, it does admit at least two ergodic (and therefore mutually singular) ones.
This leads to the intuition that, in order to guarantee the uniqueness of its invariant
measure, it suffices to show that a Markov process explores its state space ‘sufficiently
thoroughly’.

8.3 Quantitative Ergodic Theorem

Let (y:) be a Markov process on a metric space X with transition semi-group 7; : ¥ — E
where E c B,(X) is a Banach space. Note that, given geometric convergence to the
equilibrium of the Markov process,

ITof = fle < Me™| flg,

one can deduce that the convergence of the expectation of the time average to the
spatial average is of the order 1/T: Denote E, taking expectation with respect to the
Markov process with initial value y.

I, (; fo ' f(ys)d5> -7l % fo (1) - Ps|
<lle [ M ds < 311

However we would like to work out the difference between the time average, not the
expectation of the time average as given above, from f.

Lemma 8.3.1 [Law of large numbers] Let T; be a Markov semi-group on X. Suppose
that the following exponential ergodicity holds:

|Tof = Flloo < Me™| fo-

Let (y;) be a Markov process corresponding to T;. Then, for any bounded function f,

1 (T _
E L floeas =7, <0

where C = A/ 8| /.

Proof Without loss of generality, let us assume that f = 0. Then

2(p [ wnis)’ e [ [ o)
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- ;QLTLSLTT(JCTSJ)( Vu(dy)drds + — J J f s(fTr—s f(y)u(dy))drds

M (T (T ey 2 2
| et sar < Za10”

from which we see the ﬁ rate of convergence. ]

What we have in mind in the last theorem is an elliptic operator on a compact
manifold.

8.4 Functional Central Limit theorem

Given a function f centred with respect to the invariant measure for a Markov process
y with generator £, we consider /¢ Sé “ f(yr)dr. For simplicity we shall assume that y;
solves the SDE:
dyr = Y Yi(y ) AW} + Yo(yy)dt, (8.1)
7

If g is a C? function solving the Poisson equation and then

g._ _ _ ! < — ’ k
MY = g(ye) — g(y0) L@@m ;LDm@%wm

is a martingale. If £Lg = f, we expect that \[So (ys)ds = /eg( yt) — Veg(yo) — v/eM?
converges to a Wiener process. ‘

Lemma 8.4.1 Let T; be a strongly continuous semi-group on a Banach space E with
generator L. Suppose that g is a solution of Lg = f and suppose that lim;_,, T;g exists
which we denote by g. Then

Q0
0

Proof By the semi-group theory,

¢ ¢
Tig—g = f ;ngds = J TsLygds
0 ¢S 0

= f T, fds.

0

Then Sé T, fds has a limit which we denote by ;" T, fds. We take ¢t — o to conclude. [J
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Note that under the ergodic assumption, 7; f converges. Suppose that, on the other
hand, Sé T, fds converges as t — o in L?(dx), i.e. the following limit exists:

lim L L (Tsf(x), T, f(x))r2dsdr.

t—00

Lemma 8.4.2 LetT; be a strongly continuous semi-group on a Banach space E < B,(X)
with generator L. Let f € E be such that Sé Tsfds and T;f converges ast — . Then
§o Tsfds € D(L) and it solves the Poisson equation L(§;" T fds) = — f.

Proof Note that {; 7, fds € Dom(L), and { T; fds — | Tsfds by the assumption. Since
LSB Tsfds = (T;,f — f), the right hand side converges by assumption. Consequently,
SSO Ts fds belongs to the domain of the closed operator £ and

Q0

ﬁ(f Tsfds) =lm Ty f — f.

0 t—00
The convergence is in the supremum norm. Then lim;_,, S(t) T, f(z)ds and limy_,o, T} f ()
exist for every z. Fixing z, suppose that a = lim; ., T3 f(z) £ 0. Without loss of
generality, we assumea > 0. Let 7" be sufficiently large, then XtT Tsf(x)ds > §(t —T)
which has no finite limit, as ¢ — oo. We conclude that lim; . T3 f = 0. O

Recall that if y; is a right continuous Markov process and an invariant probabil-
ity measure 7, then its Markov semi-group extends to a positive preserving strongly
continuous contraction semi-group on L?(w) where p > 1.

Definition 8.4.3 Let 1 be a Borel measure on X and denote by L?(X) the space of L?
functions from X — R. A Markov semi-group on X is said to be reversible with respect
to p if for all f,g e L?(u),

| omisan— | frigan
X X
The measure . is said to be a reversible measure for 7;. In this case T; is said to be

symmetric on L?(p).

Exercise 8.4.4 If ; is a reversible probability measure for 7;, show that it is an in-
variant measure. (Recall that 731 = 1.)

Theorem 8.4.5 (Spectral Theorem) Let T' be a self-adjoint operator on some separa-
ble Hilbert space H. Then, there exists a measure space (FE, ), a unitary operator
K :H — L*(E, i), and a function A : E — R such that

Dom(T) ={fe H:AKfe L*(E,n)},
(KT f)(A) = AN (K f)(N),

where A € E.



8.4. FUNCTIONAL CENTRAL LIMIT THEOREM 157

Corollary 8.4.6 Let T; : H — H be a strongly continuous symmetric contraction opera-
tor with generator L, and g € Dom(L) then lim;_,,, T;g exists.

Proof Since 7; is symmetric, £ is self-adjoint. Since 7} is a contraction semi-group,
(Lffy < 0. By the spectral theorem, there exists a measure space (F,u), whose o-
algebra plays no -significant role here and so omitted, a function ¢ : £ — R, and a
unitary operator K : H — L?(E, ;1) (an isometry, preserving the norm, and K* = K1)
such that
Lf = K*(pKf)

Since L is negative, (o(K f), K f);> < 0. Since K is unitary, (o(f), f)r2 <0 for all f € L2,
consequently, ¢ < 0. Now

tK*pK

Tig=ce g

by functional calculus. Since ¢ < 0, e!5*?K < 1 and lim;_, /59K = 1,_4. By the
dominated convergence theorem, as t — o

ITig = Lo=0 92 — 0,
proving the claim. (]

Note that 1,_( g is in the kernel of £ in the sense that £(1,-9¢9) = K*¢l,-0Kg) = 0.

So for any f € E,

1 t
¢ | zsas— m
t Jo

where H(f) denotes the projection of f to the null space of L.

Let y; be a stationary Markov process corresponding to a symmetric semi-group 7;.

Lemma 8.4.7 Let 1T} is a reversible strongly continuous contraction Markov semigroup
on L?(r), where w is a probability measure on a smooth manifold, with generator L. Let
f: M — R be a function with f = 0, f € L?(n). Suppose that Lg = f has a bounded C?
solution g. Suppose that

n? = f <Tsf7 f>L2(7r)d8 < 90,
0
Then, -
E(ve j f E[f (y2) f (] dsclr)?
0 0

increases to 2t §;(f, Ts )2 (x)ds.

Proof For s < r,

E[f(ys)f(yr)] = JX Ts(fTr—sf)dm = J‘X fL—sfdm = (f, Tr—sf>L2(7r)'
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We first compute

t/e (/e
E(ve j f E[f (y2) (] dsclr)?

J t/ef | ds dr + ef/e f y(r)] ds dr.
= J t/ef f fTo_sfdr ds dr + € f v f ‘ L FTs_, fdr ds dr

J f Jt/ef T,f dvdudr = 2J Ou /E<f, T, fHdvdu’.

Suppose that {°(f, Tsf)r2(r) €xists, since Sé<f, Tsf)r2@m =0,

t/e rt/e 0
2
E(v/e fo fo ELf (ys) f (yr])dsdr)? — 2t fo P Tuf 120y s,

the left hand side is monotone increasing in e. O
The following can be found in [?], see [?, Theorem VIII.2.17].

Lemma 8.4.8 Let X° = (X{,X5,...), ¢ > 0 be a _family of continuous local martingales
starting at 0. Let By, Bs, ... be independent standard Brownian motions, «;; € R, i,5 € N
such that Y ;af; < o foralli € N, V; := 377 ;jBj, i € N, and V = (V1,Va,...). If the
quadratic variation (X}, X[); converges in law to (V;,V;); = tz _ ooy for all k,l e
N, ¢t > 0, then X¢ converges to V weakly as ¢ — 0, i.e. for each n € N, (X{,..., X)
converges in law to (14, ..., V,,) with respect to the uniform topology on compact intervals.

The following theorem has numerous extensions.

Theorem 8.4.9 (Functional Central Limit Theorem) Suppose that T; is a reversible
strongly continuous contraction Markov semigroup on L?(n), where © is a probability
measure on a smooth manifold, with generator L. Let f : M — R be a _function with
f =0, fe L?(n). Suppose that Lg = f has a bounded C? solution g. If

0
2= J;) <T8f7 f>L2(7r)d8 < 90,

and y; is the stationary Markov process with transition semi-group T;, solving the SDE
(8.1), then )

t/e
f(ysy)ds = \f f(yr)dr — 25W,.
Je o
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Proof Since y; solves the martingale problem for L,

t
MY = 9(un) = o) ~ | Lalye)ds
0

is a local martingale. In fact,

t ot

B(MY) < AlTiglh, + 9P + | | BlLou)Lotunldsdr < .

0 Jo
We have used the contraction property: |7; g|2L2 < |g|2 and by the previous computation,
the last term is finite. Thus (M) is in fact an L?- martingale and (M;)? — (M), is a

martingale. To show that \/e(M ), converges, it is sufficient to show their quadratic
variations converge. It is easy to see that these converge in expectation.

E(v/e(M)y/, — 25) = Eg(m) — g(u0) — v/e jo * Flys)ds)? — 265 — 0.

Note that g € L?, and y;, is stationary, so \/eg(y:) — v/eg(yo) — 0 in L2. This implies that
the martingale process converge weakly to a Wiener process. O

Note that under the assumption of the theorem,

t rt Q0
j J<Tsf, T, yr2(mydsdr < tj Tsflp2(myds = 5% < o0
0 Jo 0

Recall that under the assumptions of Lemma g = —§ Tsfds, which is suffi-
ciently smooth if £ is nice, e.g. elliptic and smooth, and f has nice properties.
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8.4.1 Appendix: Locally Uniform Law of Large Numbers

The motivation for this section comes from with feedback models. The fast variable
maybe affected by the slow variable.

€ 1 € € Tt 1 € €

We first sort out what is the averaging of long time for a function. Again let us first
consider: ]
Ay = Y Vilwie, Y)W, + Vo (g, Yy)dt.
s €
(2

We freeze the slow variable in time, as they move slowly, and consider the stochastic
equation:

-. 1
AV = Vi(x, V) dW] + —Vo(w, Yi)d.

We further postulate that for each z, ¥;* has an invariant probability measure pn*.
From earlier discussions it is reasonable to assume that

‘1 Lt (@, ys)ds — ff(x,y)ux(dy)’ — 0.

Example 8.4.10 Consider on S! the following sde, where the parameters x taking
values in R,
dy; = sin(y; + x)dB; + cos(y; + x)dt.

Its generator is £, = cos(z + y)% + Lsin?(x + y)%
Let us begin with a Markov process with an invariant probability measure = and

generator £. Suppose that we want to solve the Poisson equation Lg = f. Since
{ Lgdm = 0, it is necessary that
J fdm = 0.

Suppose that £ is a Markov generator for a continuous Markov process on a d-
dimensional compact manifold. Assume that £ has a discrete spectrum with eigen-

This is called the center condition.

values
0=/\o<)\1<...,

and the corresponding eigen-functions e, forms an orthogonal (normal) basis of L2(7r)
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For simplicity we assume that
1
Ef = Q;LYkLka + Lyof.
where Y; are smooth vector fields. Suppose that {Yi(z),...,Y,,(z)} has dimension d at

every point — in this case £ is said to be elliptic. It is also a diffusion operator.

Note that £ applies to any constant returns zero. So ¢y = 1. Then any L? function
f can be written as:

f = Z <f7 en>L26n'
n=0

The condition { fdr = 0 implies that {f,eo);> = 0. Then we can solve the Poisson
o0

equation Lg = f explicitly. Set g = >, /\%< fyenyr2en. It is clear that we can bound g
with bounds on f.

Definition 8.4.11 Let £, be a family of Markov operators with a unique invariant
probability measure . We say that £, satisfy a locally uniform law of large numbers
if the following holds.

(@) « — py is locally Lipschitz continuous in the total variation norm.

(b) There exists a positive constant C(z), locally bounded in z, such that for every
smooth function f : G — R of compact support, there exists a constant ¢(f) such

that o
‘TL flar) dr — L F () pa(dy)

where z,. denotes an £, -diffusion.

< Cla)e(f)

1
. (8.2)
L) VT

Theorem 8.4.12 (Locally Uniform Law of Large Numbers) Let G be a compact man-
ifold. Suppose that Y; are bounded, C* with bounded derivatives. Suppose that each

Z ) + Yo(z, )

satisfies Hérmander’s condition, and has a unique invariant probability measure .
Then u, has a locally uniform law of large numbers.

w \

Furthermore, there exists a positive constant C(x), depending continuously in x, such
that for every smooth function f : G — R,

‘; £t+T f(z,27) dr — Lf(y)/ix(dy) < C(@)C(f) 1

. 8.3)
La(@) VT
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Proof We only prove the elliptic case. It is sufficient to work with a fixed z € N. We
may assume that {, f(x,y)u.(dy) = 0. For any smooth function f with §, f(z, y) p.(dy) =
0, L;9(x,-) = f(z,-) has a smooth solution. If f is compactly supported in the first vari-
able, so is g. We may then apply Ité’s formula to the smooth function g(z, -), allowing
us to estimate 7 Sg f(y*)dr whose L?(2) norm is controlled by the norm of g in C! and
the norms |Yj(z,)|. The £, diffusion satisfies the equation:

J f(z (9(95 z7) — 9(x, o) —<ZJ dg(x zf))de)

Since |Y(z, )| is bounded, it is sufficient to estimate the stochastic integral term by
Burkholder-Davis-Gundy inequality:

S r k 2
E@ j dg(z, ) (Y dW) Zmoof Eldg(x, 25)|? ds.

It remains to control the supremum norm of dg(z,-). This follows from elliptic regu-
larity theory. O

8.5 A basic averaging theorem- not covered in class

8.5.1 Invariant Measure

We present here a formal derivation of the formula for the invariant measure. Con-
sider an SDE of the form:

dX} = > 0"(X,)dB7 + of(X,)dt (8.4)
i,J
Then, for any function g(X;) we define P,g(Xy) := Eg(X};). The 1invariant measure x of
L is defined to be the measure that satisfies, for all functions g:

j Pg(X)p(dX) = f 4(X)p(dX)

Let us define the differential operator £ = 53, 0%(X )aclaer + 3. 08(X)»2; such that

0X10X7 ox7
from It6’s formula applied to g(X;), we obtain:

9(X1) = g(Xo) f Lg(X ds+f Z i (Xs)o (Xs)dB] (8.5)
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Taking expectation values in eq. (and assuming this commutes through the
integral and £), the stochastic integral term vanishes by the martingale property and
we obtain:

t
Ptg(XO) — g(Xo) = JO ,Cpgg(Xo)dS (86)

Differentiating with respect to time then gives P,g(Xy) = P,g(X,) and then after for-
mally integrating we have P,g = ¢'*g. Now, if £ is an elliptic operator and if X; takes
values only in a compact set, then there is a unique invariant probability measure. If
we suppose this measure to be of the form u(dX) = p(X)dX for some density function

p then we find:
f [e'9(X)]p(X)dX = f o(X)p(X)dX (8.7)

Upon integrating by parts we find:

[e=a0apax = [ ge0[e=p0xn]ax 5.8

Where L£* is the adjoint operator to £ and is given by:

Z 8X16XJ 6XZ (8.9)
We conclude that £*p = 0 almost everywhere.
8.5.2 An interactive averaging principle -not covered in class
Let us consider an equation on T¢ x R%: for 1 < i < d.6f = (6°,...,0/), If =

(I, 1™,

ol = 2 (IF)dWF + Kj (65, I,)dt
dI' = wa;, If)d

Theorem 8.5.1 Let {w!} be smooth functions, and (w!(6)) is a positive matrix at any
point § € T. Let K% smooth functions. For any 8 > 1, > 0 and for some function c(t),

1/8
E[sup I1;(s) — fi(s)|ﬁ] < c(t)e/ (8.10)

s<t

Proof This proof is a re-writing of that given in [11]. Throughout the proof we shall
use the following inequalities which follow from the properties of norms on R" (see



8.5. A BASIC AVERAGING THEOREM- NOT COVERED IN CLASS 164
[?]). Forall 5 >1
N B N N 8 N
(Z |xl~]> < NP ) (Z |zi|> < il VP (8.11)
i=1 i=1 i=1 i=1
We wish to bound the following quantity:
t
() = £(6) = ¢ | la(o) = Q)] 8.12)
Now let us divide the interval of time integration into sub-intervals of length At :=
(tb!=9):
O=trs<ti <. <ty <ty =t
t, = nAt (fornz(),...,N); N := [bq_l]
Note the following useful bounds:
At <th'™ N <9ty —ty < At (8.13)
After the division into sub-intervals we have:
N tn+1
Hi(y) ~ F00) = >, [ [010r) 9 Fi ) ©.14)
n=0"vn
N lnt1 ~
w03 | [P on)) - QuE(E) Jar 8.15)
n=0"? B
N tn+1 r
w0 Y [ Qi) - Qutaa) far 5.16)
n=0"ln B
N tn+1 -
w03 | Q) - Qutson | 8.17)
n=0"tn -

Thus there are four terms to bound; we shall refer to egs. (8.14) to (8.17) as A%, Aj,

A, AY respectively. Consider A}:

. tN+1 tN+1
A4 =b ) bsupVQzlf

| QA (1)) = QiCF(br)) |ar

H(I,) - f(br) ‘dr

Then: .
Hion) = Si(0)] < |41+ 4] + |45] + bsup [VQi [ 11 (wr) = 7o)l
If we sum this inequality over ¢ we find:
H(y) = F(t A T")| < Y (145 + 3] + |43))

=1
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+ b(; sgp |VQ@"> Jo |H (yr) — f(br)|dr

The Gronwall inequality may be applied to this to give:
H(ye) = Foe A T)| < e Z (|43 + ] 43 + |4))

where ¢; := (3", supp |[VQ;|). We may then deduce that:

Esup|H(y) — f(b(s A T%)) £

s<t

< cpebt sup Z Esup | 4]

7 s<t

‘,31/6

where ¢y := m(3m)'~1/8, Now let us consider A,:

=03 [

tn+1

Gi(Finr(00,), 11,) = Qi (1)) | dr

N At
1A )
= DAt Z Atf §i(Fe, v (0r,)s I, )dr —f 9i(0, It )dp g g, (0)]  (8.18)
(M)
< DAL(N + DE < ci(bt)1/? (bq/2 + bl—qﬂ) (8.19)

In going from eq. (8.18) to eq. (8.19) we have used the law of large numbers as stated
in [11, pp. 814]/ From the above it also follows that:

Esup|45|"" < &(bt) 2 (bq/2 + bl_‘I/Q) (8.20)

s<t

tn+1

Now we turn our attention to As:
Qi (11,)) — Qu(H (1)) |dr

Y

< bAtsup ’V(Qi o fI)] > sup |I, — I, |
D n=0 r€[0,At]

Afl=b

From ?? we can see that:

[Tty = Ttpgr| = b

tn+7
J Ki(0s,15)ds

< bAtsup |Kj|
D

which implies:
|AL| < ch(N + 1) (bAE)? < c(bt)* (b7 + b*729)

B
— Esup |4} \ﬁ < (bt (b9 4+ b2 %)

s<t
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where ¢} := supm, p |Kr| supp ‘V(Qi oH )’. It remains for us to consider A;:

. N tn+1
| AL = b Z L [9i(0r, Iy) — §i(Ft, » (01, ), It,, ) ]dr
n=0"n
N ) o\ 1/2
bAt Sup ’vg74| Z Sup <‘9tn+7' - Ftnatn"rr(etn)‘ + ‘Itn+7' - Itn’ >
TmxD n—0T€[0,At]

N
< C%bAt Z ( Sup |9tn+r - Ftnytn+r(0tn)| + Sup |Itn+7’ - Itn)

n=0 \7€[0,At] re[0,At]
N
S AEVAL Y| Sup (0,40 — Fiy o (01,)] + co(b8)* (619 + b7
n=0T€[0,At]

where ¢ := suppm, p V3| and ¢ = ¢ suppm, p |K;|. This then implies:

N 1/B
Esup |41 < @V + DA GOY IR sup (04,40 — F 40 (01,)]
s<t n=07€[0,A1]

+ & (bt)2 (b + p?20)

where & := 2'"18¢l and & = 2! /8¢, Now:

m tn+r
O er — Fonprer(O0)] < |3 j [won(Ls) — Ty, )]ABE| + b

tn+T
J Ky(0s,I5)ds

m tn+1r
< D[ lnr) — et 1aBE| + ot sup |16
k=1 n T™x D
From which we deduce:
N 8 tn+T pl/b
E>' sup (04,0 — Fryt,4r(01,)]°  <ocs Z EZ sup J [wr(Ls) — wi(1y,)]dBE
n—0T€[0,At] k=1 n=07€[0,At]

+ eres(N + 1)Y8(bt)pt—a

where ¢; := suppm, p, |K;|° and ¢g := (m+ 1)1~/ We now apply the Burkholder-Davis-
Gundy inequality to find:

m N 51/5

Z EZ sup

tn+7
j lon(L2) — wi (I, )|dB
k=1 n=07€[0,At]

p/21/8

< ki g ([ el () s )
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m N 6/21//3
< ¢ Z IEZ (At sgp Vwi|* sup |I, — Itn|2)

k=1 n=0 $€[tn,tn+1]
m N 1/B
<en Y EY (R(A0?)7? <& (n)2 B0 (N 4 1)V
k=1 n=0
And so:
E SUp [0, — Fhgr(00,)17" < s (09261992 1 cro(eip | (N + )10 8.21)
re[0,At]

¢y is the constant from the BDG inequality and ¢;o = c7cs. ¢11 := ¢o sup, |Vwi| suprm, p | K7
and ¢é;; = mcyy. Overall, then, we see:

|51/6

Esup |A} < e (N + 1) (bt)> 2027592 4 Gleig(N + 1)(b8)26%20 + & (bt)? ('~ + b>29)

s<t
< o (bt)P? (b1—3q/2 + 52—5q/2) + cia(B)? (b1 79+ b7720) 4+ ()2 (01 + 67 72)

where cjo 1= Cgéééll and ci3 := égcw. We can now put everything together to obtain:

pl/B
Esup |H(y,) — f(b(s A T"))

s<t

< o {21a(bt) 72 (17392 4 0202) g (b) V2 (617 4 0272 o G (b1)2 (67 4 022)
+e3(bt) 2692 + e4(bt)2 (b7 + qu)}

where the hats on the constants denote that we have taken the supremum over i. If
we re-scale the time ¢t — ¢/b we find:
pl/B
Esup |H(ys  pu) — /(s A bT")|

s<t

< cae {21t (b1 72 4 IZ) oyt (0170 4 622 4 Gt (617 4 02
et/ 4 o017+ 522 |

The powers of b in the above arel — %, 2 — %, 1 —g¢, 2 —2q, and %; therefore the order
of convergence is maximized if we choose ¢ = 1/2. Then:
pl/B
Esup [H(ys  u) = (s A UT")

s<t
< [b1/4 (a1t1/2 + a2t5/2) + /2 (a3t1/2 + a4t2> + b3/4a5t5/2 + b<a6t1/2 + a7t2)]eclt

for some constants «;. For b < 1 we can write the above as:

b gl/B
Esup [H(ys ,zu) — [(s A bT")|

s<t

< b/ (d1t1/2 ¥ aot? + 543155/2)6“ (8.22)

for some constants &;. O
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8.6 Examples: not covered in class

8.6.1 Perturbation to Stochastic Integrable systems

Let H : R*? - R, consider the Hamiltonian equation

o0H . o0H

q:%a p_i(?iq’

0 1

Write z; = (q,pt) and J = ( 1 0

) . The equation becomes

.ft = JVH(xt)
The energy H is a constant along the trajectory of the solution : H(x;) = H(zo).

Example 8.6.1 Take H = 1p? + fw?¢®>. The general solution if of the form ¢(t) =
Asin(wt) + B cos(wt). Consider

(g(t). p(t)) = A(sin(wt), cos(wt)).

The level sets are ellipsoids.

Example 8.6.2 Let H : R? > R, and (VH)"! is the skew gradient of H. Consider
dz§ = (VH)(x5) 0 dBy + €V () dt.

In (H,0), the action angle coordinates, It reduces to a system of equations where
H € R" is the slow variable and 0 € S™ is the fast variables.

d € €
%Ht = 6f(Ht79t)a

dby =X (Hg,05) o dW; + eXo(Hy, 65)dt.

Change time t — t/e:

d Fre rTe e
A . 7 e §
dd, :ﬁX(Hte, 05) o dW; + Xo(Hy, 05 )dt.

The Poisson bracket of two functions f and g is denoted by {f, g}, it is given by the
formula:

{f.9} =<{V,JVg) =), 0q; Opi  Opi 0g;

=1

d <af o9 of 6f>
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A Hamiltonian system in dimension 2d is said to be Liouville integrable if it has
independent conserved quantities H;, which are in involution, i.e. {H;, H;} = 0.

Louville’s theorem : Any integrable system on R*? is solvable by quadratures, i.e.
the solution can be expressed explicitly by integrals. Furthermore, if the level set
{H; = ¢;} is compact and connected, it is diffeomorphic to the d-dimensional torus
torus T¢.

Suppose we have {H;}]" ; in evolution, an interesting model is:

daf = Hi(a§)dW] + eV (xf)dt.
=1

In Darboux coordinates we have:
1

dop = G ;1 W (I) AW + K4 (65, 1) dt

dI;" = Ki(05, I; ) dt

8.6.2 Scaling of Riemannian metrics

SU(2) which can be identified with the sphere S°. The Lie algebra of SU(2) is given by

the Pauli matrices
i 0 0 1 0 1
X, = X9 = X3 = .

By declaring {\%X 1, X2, X3} an orthonormal frame we define Berger’s metrics ¢°.
Thus (53, ¢¢) converges to S2. Consider

1
L€ = E(X1>2 + Yo,
equivalent the SDE on the Lie group:

1
dg; = \%Xf(gt) odB; + Yg (gr)dt,

There is the Hopf fibration 7 : SU(2) — S?(1). Using this structure, we obtain u§ such
that u§ and gf are both on SU(2) and have the same projection on S3/S*:
uy = (Ad(hiye)Yo)™ (uf)
dht = Xik(ht) (¢] dBt
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Let us denote by A%, and Ag: the Laplacians on (S%,m.) and on S! respectively, and
also denote by A" the horizontal Laplacian identified with the Laplacian on S%(3) =
S3/81.

1
dgy = %Xl (g) o db} + Xo(gy) o db? + X3(g;) o db. (8.23)
These operators commute and Af; = %A g1 + APIf { X1, X5, X3} are the Pauli matrices,

identified with left invariant vector fields, then Agi = (X7)%, A" = (X2)% + (X3)%. As
¢ approaches 0, any eigenvalues of the Laplacian Ag; coming from a non-zero eigen-
value of %A s1 is pushed to the back of the spectrum and an eigenfunction of A¢;, not
constant in the fibre, flies away. In other words the spectrums of S converge to that
of S2. Cheeger, M. Gromov, Tanno-79, L. Bérard-Bergery and J. -P. Bourghignon, H.
Urakawa]Urakawa86.

8.6.3 Geodesics

The geodesic equation on the orthonormal frame bundle solves

I.Lt = He (Ut)

Then the projection of u; is a geodesic with speed upe. The solution to
n .
duy = Z H.. (ut) o dW}
i=1
projects to a Brownian motion. We consider

duy = Z H.,(ug) o dW} + €V (uy)dt.
i=1



Chapter 9

Appendix

9.1 Metric Spaces

A metric space is a space equipped with a distance function d. A metric is a function
d: X x X — R such that the following holds for any points z,y,z € X: (i) d(z,y) = d(y, z),
(ii) d(z,y) = 0 if and only if x =y, (iii) d(z,y) < d(x, 2) + d(yz,).

A sequence of points {a,} in a metric space is called a Cauchy sequence if

lim d(an, an+m) — 0.
m—00

A metric space X is complete if every Cauchy sequence has a limit in X. A metric
space is separable if there exists a countable dense subset {a,}, meaning that every
open ball B, (r) := {x € X : d(x,z9) < r} contains at least one point from {a,}.

A set in the metric space is open if whenever it contains a point z, there exists r > 0
such that it contains B,(r). A set U is said to be closed if its complement X\U, in X,
is an open set. Open balls B, (r) are open and closed balls B, (r) : {z € X : d(x,z0) < 7}
are closed sets.

Examples of metric space include the Euclidean spaces with d(z,y) = |z — y| is
complete separable metric spaces. Any finite dimensional complete Riemannian man-
ifolds, with the Riemannian metric, are complete separable metric spaces. For clarity,
in the definition of manifolds, we assume the properties of Hausdorff and second
countability. A subset of the metric space with the same metric is a metric space.

Any set X is a metric space when endowed with the discrete metric: d(z,y) = 1 for
any z # y and d(z,x) = 0 for any point z, y.

Definition 9.1.1 * A metric space is said to be sequentially compact if every

171
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sequence of points in the space has a convergent subsequence.
* It is said to be totally bounded (or pre-compact) if, for every number ¢ > 0, the
space can be covered by a finite family of open balls of radius e.
Every totally bounded set is separable, in particular every compact metric space is
separable.

On a metric space, the following notions of compactness agree:

Proposition 9.1.2 Let K be a subset of a metric space X. The following statements
are equivalent:

* Every open covering of K has a finite sub-covering.

¢ K is complete and totally bounded.

* Any infinite sequence of distinct points in K has a limit point in K.
In other words, sequential compactness is equivalent to the space being totally bounded
and complete.

If A is a set, define the distance function to A by: d(z, A) = infyc4 d(z,y).

Lemma 9.1.3 [et Ac X. Then forany z,z € A,
|d(l‘,A) - (ZvA)| < d(l‘,Z).

Proof For any z,y,z € X, the triangle inequality gives d(z,y) < d(z, z) + d(z,y). Taking
the infimum over y € A, we obtain: d(z, A) < d(z, z)+d(z, A). This gives d(z, A)—d(z, A) <
d(x, z). The required inequality follows from the symmetry of d. [JIn fact d(z, A) =0 if

and only if = belongs to the closure of A.

Definition 9.1.4 A space is said to be a Hausdorff space if the following hold:

® (1) [Ty, Fréchet] or ay z + y there exist disjoint open sets U and V such that x € U
and ye V.

* (2) [Ty, normal] For any disjoint closed sets €| and C; there are disjoint open sets
Uand V suchthat C; c U and Cy, c V.

For a general topological space, 7, does not necessarily implies 7,/ Tkae the ex-
ample X = {0, 1} with the topology consists of two open sets ¢, X. The only closed sets
are ¢ and X, and one can take the open sets ¢ € ¢ and X ¢ X. But there are no open
sets that distinguish the two points.
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Proposition 9.1.5 A metric space is a Hausdorff space.

Proof Any singleton sets is closed, so 7y implies 77. Let A, B be disjoint closed sets.
Since distance function to a set is continuous, {z : d(z,A) < d(z,B)} and {z : d(z, A) >
d(z, B)} are open sets, and

Ac{x:d(z,A) <d(z,B)}, Bc{z:d(x,A) > d(z,B)}.

Metric space has a other nice property: If A and B are closed,

d(z, A)
(z,A) + d(z, B)

f@) = 5
is a continuous function with the property that f|4 = 0 and f|g = 0.

Theorem 9.1.6 (Urysohn’s lemma) For any closed and disjoint subsets A and B of X
there exists a continuous function f : X — [0,1] such that f =0on A and f =1 on B.

The following is taken from Theorem 4.34 [4], pp132].

Theorem 9.1.7 (Tietze Extension Theorem) Suppose that X is a locally compact Haus-
dorff space and K is a compact subset of X. If f is a real-valued continuous function on
K, then there exists a continuous function F on X such that F' = f on K and F can be
taken to vanish outside of a compact set.

As usual, B(X) denotes the Borel o-algebra on X. It is the smallest collection
of subsets of X’ that contains all open sets and closed under countable unions and
countable intersections.

Definition 9.1.8 Let X be a metric space. A measure on (X, B(X)) is called a Borel
measure.

Theorem 9.1.9 [14, Thm. 1.7, pp.4] The Borel o-algebra on a metric space X is the
smallest o-algebra with respect to which all bounded, continuous, real valued functions
on X are measurable.

9.1.1 Algebra of functions

An algebra A (over the real number field) is a real vector space with a binary operation
Ax A — A, which we denote by (z,y) — xy, satisfying the following bilinear iproperties:

(r+y)z=xz+yz
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z(x+y) =zzx+ 2y
(az)(by) = (ab)(zy)

for all z,y,z € A and a,b e R.

If X is a metric space, the space C,(X'), of bounded continuous real-valued func-
tions on X is an algebra with the usual pointwise multiplication as its binary oper-
ation. The spaces Cx(X) ((the space of continuous functions with compact support)
) and Cy(X) (the space of continuous functions vanishing at infinity) are subspace of
C,(X), and are also algebras.

For a manifold X, the sub-spaces of C* or C* functions within the above mentioned
spaces, such as CE(X) and CZ(X), are also algebras.

If ¥ = R", the space of polynomials forms an algebra, while the space of linear
functions does not.

9.2 Measures

By a measure we mean a o-finite measure: X = U} ,U; where U; are measurable sets
of finite measure. On the metric space in the context of this note, we assume, in
addition, that each ball has finite measure.

Proposition 9.2.1 Let 1 be a probability measure on separable metric space, there
exists a unique closed set C' such that 4(C) = 1 and if D is a closed set with u(D) = 1
it is necessary that C < D. Moreover C is the collection of all points x € X with the
property that any open set containing x has positive measure.

Definition 9.2.2 The closed set C in the above proposition is called the support or
the spectrum of the measure pu.

Definition 9.2.3 A measure on a metric space is regular if the measure of any mea-
surable set is determined by the values of the measures on open sets or on closed
sets:

wu(A) = sup{u(C): C < A,C is closed }
w(A) =inf{u(C) : C o A,U is open}.

Definition 9.2.4 A measure p is tight if for any € > 0 there exists a compact set K < X
such that u(X\K) < e.



9.2. MEASURES 175

Lemma 9.2.5 If X is a complete separable metric space, and p a probability measure.
Then for every ¢ > 0 there exists a compact set K ¢ X such that u(K)>1—e¢.

Proof Let {r;} be a countable dense subset of X and denote by B(z,r) the ball of
radius r centred at x. Note that since {r;} is a dense set, one has | J,.,B(ry,1/n) = X
for every n. Fix ¢ > 0 and, for every integer n > 0, denote by N, the smallest integer

such that
€

(U B(rk,%)> >1- 2

k<Np

Since |J,.B(rk,1/n) = X , the number N, is finite for every n. Define now the set K

as 1
K= U Bre, ~) -

n=0 k<N,

It is clear that u(K) > 1 —e. Furthermore, K is totally bounded, i.e. for every § > 0 it
can be covered by a finite number of balls of radius ¢ (since it can be covered by N,
balls of radius 1/n). It is a classical result from topology that in complete separable
metric spaces, totally bounded sets have compact closure. O

Definition 9.2.6 (Functions of positive type) A function f : V — C where V is a
vector space is of positive type if for any n vectors \q,...,\, in V, the matrix A, with
A;; = f(A — X)), is a positive semi-definite matrix and f is continuous on each finite
dimensional subspace of V. Thus

Lo f(hi =) = fF(A — M),
2.5 FNi — A\)&i€; = 0 for any &,...,&, in C.

Lemma 9.2.7 If f is of positive type, then
(1) f(0) =0,

(2) f(—z) = f(z), any z € C,

(3) |f(x)| < f(0) for all z, so f is bounded.
Proof Take N =1 to get (1). Take N =2, \; =0 and \; = —z to get (2) and
fO)  f(2)
f(=z) [f(0)

is positive semi-definite. So f(0)? — f(z)f(z) > 0, giving part 3. O
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9.3 Measure determining sets

Theorem 9.3.1 Suppose that (2, F) is a measurable space, and C is a w-system gen-
erating F. Let  and v be two measures which agree on C.

1. If u() = v(Q) < o, then p = v

2. More generally, if there exists an increasing sequence of subsets (), € C, such that

Q= U1 and p(Qy) = v(Q) <o forallk > 1, then p = v.

Proof (1) First assume that ;(Q) = v(Q) < 0. Let
={AeF:ulA) =v(A)}
Then ) € G by assumption. Moreover, if A, is a non-decreasing sequence of measur-

able sets in G,

n—oo n—o0

e¢] e¢]
U ) = lim p(A4,) = lim v(A U

Thus, G is closed under taking lower limit. Let A < B, A, B € G, then by additive
property,
(B\A) = u(B) — u(A) = v(B) — v(A) = v(B\A).

This means B\A € G, and therefore G is a A\-system containing a 7-system generating
F. By the 7 — A\-Theorem, G o F and p = v on F, which proves the first point.

(2) For the second point, let 7, = {A n Q. : A € F} denote the trace o-algebras on
Qk, and denote by u; and vy the restrictions to €2, of the measures p and v:

YA€ ]'—, ,uk(A) = ,LL(A N Qk), I/k(A) = I/(A N Qk)

Applying the first point to u; and v, we deduce that u; = v;. Therefore, by lower
contiunity of measures, we obtain, for all 4 € F,

w(A) = im p(A N Q) = limv(A n Q) = v(A),

k—o0 k—o0

completing the proof. ]

Example 9.3.2 Let Q = {1,2,3,4}. Let G = {{1,2},{1,3},{3,4}}, which generates the
discrete o-algebra F ( the power set), but not a 7-system. The measure p and v agree
on g, not on F.

n(1) =1/6, p(2) =2/6, w(3)=1/6, pn4)=2/6,

v(1) =2/6, v(2)=1/6, v(3)=0, v(4)=23/6.
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9.4 Push forward measure

Let (X, A) and (Y, B) be two measurable spaces. Let ; be a measure on X, and let
f + X — Y be a measurable function. We denote by f.; the push forward measure
under f, on (Y, B), defined as

(fsu)(B) = u(f~(B)),

for all B € B, where f~}(B) := {z : f(x) € B} is the pre-image of B under f. In other
words, the measure of B is assigned to be the measure of its pre-image.

Proposition 9.4.1 Let (), B) be a measurable space, and let ¢ : ) — R a measurable
function. Then, we have

Lsoo fdu= Lsa d(fap).

This is understood in the sense that ¢ is integrable with respect to f.u if and only if po f
is integrable with respect to .

Proof This result holds for indicator functions of measurable sets by the definition
of the push forward measure. Applying the monotone convergence theorem on both
sides shows that the set of functions with the desired property forms a monotone
class. Finally apply the monotone class theorem to conclude the assertion. ]

Definition 9.4.2 If f : X — X is a measurable map, we say that p is invariant under

fAf fu(p) = p

We define the direct measure at z € X as

1, ifze A
mA = ’
%(4) {O,ifxgéA,

for measurable sets 4 < X.

Example 9.4.3 For any transformation 7' : R" — R", we have T,(0;) = 0r,. The
d-measure is not invariant under rotations (unless x = 0), nor under translations.

Remark 9.4.4 Given a measure v on ), there is no universally sensible way to con-
struct a measure on X from v and a measurable map f : X — ) in general. However,
if f : R — R is injective, we can define the pullback measure, denoted by f*v, as the
measure (f~!),v. In other words, f*v(A) = (f~1).v(A) = v(f(A)) for measurable sets
Ac X.
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On the other hand, consider the case where ) = [0, 1], dx is the Lebesgue measure,
and f: {1,2} — [0,1] is defined by f(1) = 0 and f(2) = 0. In this situation, there is no
measure on {1,2} whose push forward measure is dx. Therefore, there is no suitable
measure p on X such that f.(u) = v.

9.4.1 Distributions of random variables

Let (2, F,P) be a probability measure. Let (5, G) be a measurable space. A measurable
function X : Q2 — S is called a random variable, and S is called its state space.
The distribution of X is the push forward measure X, (P) on its state space X', where
X*(P)(A) = P(X~1(A4)). The distribution of a random variable encodes its statistical
information.

If p: S —>Rand X : Q — S are measurable maps, then
E[p(X)] = f po X dP — f o d(X.P).
Q S

Proposition 9.4.5 Let Y be a real-valued, non-negative random variable on (2, F).
Then, Y = 0 almost surely if { , Y = 0 for every measurable set A € F. Consequently, two
real valued, integrable random variables Y and Y’ are equal almost surely if{ , Y = {, Y’
for every measurable set A.

Proof Suppose that {Y £ 0} > 0. Since {Y > 0} = {Y 4 0} and has positive measure,
there must exist some a > 0 such that the set {Y > a} has positive measure (otherwise,
P(Y > 0) = lim, o P(Y > 1) = 0), But, then
J YdP = aP(Y > a) > 0,
{y>0}

which contradicts the assumption that {,Y = 0 for any measurable set A. Hence
uw({Y # 0}) = 0 ,completing the proof.

For the second statement, let A = {Y > Y’}. Applying the first result to (Y — Y')14,
we conclude that Y = Y’ on A.By symmetry, this concludes the proof. O

9.5 Conditional Expectations

9.5.1 Absolute continuity of measures

Let P and () be two measures on a measure space ({2, F).



9.5. CONDITIONAL EXPECTATIONS 179

Definition 9.5.1 1. We say that () is absolutely continuous with respect to P if
Q(A) = 0 for all A € F such that P(A) = 0. This is denoted as @ « P.

2. The measures P and( are said to be equivalent, denoted by @ ~ P, if they are
absolutely continuous with respect to the other.

3. The two measures P and @ are said to be singular if P(A) = 0 whenever Q(A) & 0,
and Q(A) = 0 whenever P(A) # 0.
Example 9.5.2 Let O = [0,1) and A? = [, 41) foreachne N, and i =0,1,...,2" — 1.
Let F,, denote the o-algebra generated by the sets Aj, A7,..., A3, ;. Let dr denote
the Lebesgue measure, restricted to F,,, and let ¢ be a measure on (2, F,,) such that
i < dz. Then,

i ) 5 nAD)

where 147 in the indicator function of A}.

Example 9.5.3 Let Q@ = [0,1] and let P denote the Lebesgue measure. Define the
measure (); by

dQ

dip = 21[0’%]
Then @; « P, but P is not absolutely continuous with respect to ;. Now define Q,
by dQ2 = 21[ 1] The two measures ; and ()2 are singular.

Theorem 9.5.4 (Radon-Nikodym Theorem) If Q@ « P, there exists a nonnegative mea-
surable function ) — R, which we denote by 75 such that for each measurable set A
we have

dQ

Q) - | GRw)p),

The functwn Q — R is called the Radon-Nikodym derivative of () with respect to P.
We also refer to 5 as the density of Q with respect to P. This function is unique.

Note that if @ is a finite measure, then j—g e LY(Q,F,P). If P is a probability
measure and

Q)
| Gp@are) -1
then () is also a probability measure.

Furthermore, if % > (, then

1 dQ 1
JdP L e TP = f 2740.
P
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It follows that if Q(A) = 0 then P(A) = 0. Hence, the two measures are equivalent, and

P dQ _ .
aQ dap

9.5.2 Conditional expectations

Definition 9.5.5 Let X € L!(Q,F,P) be a r.v.. Let G be a sub-c-algebra of F. A
conditional expectation of X given G is any G-measurable integrable random variable
Y such that
f XszJ YdP, VAeg 9.1)
A A

Theorem 9.5.6 Let X € L'(Q), F, P).

(1) If Y1,Ys € LY(Q, G, P) are conditional expectations of X thenY; = Y3 a.s.
(2) Ifa,be R, X1, X5 € LY(Q, F, P) thenE(aX; + bX3|G) = aE(X1|G) + bE(X2|G).
(3) The conditional expectation of X given G exists.

(4) If X >0, E(X|G) = 0.
We denote by E(X |G) or E{X |G} any version of the conditional expectation of X given G.
Proof (1) We first prove uniqueness. Let Y7, Y5 be variables such that for any A € G,
f (Y1 — Y2)dP = 0.
A

This implies that Y; = Y> a.s.
(2) The linearity follows from uniqueness.

(3) and (4). Assume that X > 0. Define Q(4) = {, X (w)dP(w) for A € G. Then Q is
a measure. The measure P restricts to a measure on G. If P(A) = 0 then Q(A4) = 0.
By the Radon-Nikodym theorem, there exists a non-negative random variable j—%, that
belongs to L'(Q2,G, P), such that

Q(A) = L X (w)dP(w) = L %dP.

Thus % satisfies ll and is the conditional expectation of X given G.

This proves (4).
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Let X € L'. Then X = X* — X~ where X', X~ are positive functions in L'. By part
(2) they have conditional expectations. We define

E{X|G} = E{X"|G} — E{X"|G}.

(The conditional expectation can also be obtained directly by Radon-Nikodym theorem
for signed measures). This proves (3).

O

Proposition 9.5.7 For all bounded G-measurable functions g,

J 9(w) X (w)dP(w) =J 9(W)E{X|G}(w) dP(w). (9.2)
Q Q

9.5.3 Properties of Conditional Expectations

Proposition 9.5.8 Let X,Y € L'(Q, F, P) and G a sub-c-algebra of F.

~

. Positivity Preserving. If X <Y, then E(X|G) < E(Y|G).
2. Linearity. For alla,b € R,
E(aX +bY|G) = aE(X|G) + DE(Y|G).
[E(X]G)| < E(1X]19).
If X is G-measurable, E(X|G) = X.

Ifo(X) is independent of G, E(X|G) = EX a.s.

N

Taking out what is known: If X is G measurable, XY € L' then

E(XY|G) = XE(Y|G).

N

E(E(X|G) ) =EX.
8. Tower property: If G; is a sub o-algebra of G, then
E(X[G1) = E(E(X[G1)|G2) = E(E(X[G2)[G1)-
9. Conditional Jensen’s Inequality. Let ¢ : R — R be a convex function. Then
p(E(X]G)) < E(p(X)|9).

Forp =1, [E(X|9)[L, < [X]L,-
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10. Conditional dominated convergence Theorem. If | X, | < g € L' then

E(Xn|G) — E(X]G).

11. L' convergence. If X,, — X in L' then E(X,,|G) — E(X|G) in L'.

12. Monotone Convergence Theorem. If X,, > 0 and X,, increases with n then E(X,|G)
increases to E(lim,, .o, X,|G).

13. Fatou’s Lemma. If X,, > 0,

E(lim inf X,,|G) < lim infE(X,,|G).
n—00 n—00

14. Suppose that o(X) v G is independent of A, then E(X|A v G) = E(X|G).

Proposition 9.5.9 Let h : E x E — R be an integrable function on a metric space E.
Let X,Y be random variables with state space E such that h(X,Y) € L'. Let H(y) =
E(h(X,y)). Then

E(h(X,Y)[o(Y)) = H(Y).

Proposition 9.5.10 Let X : Q > X and Y : Q) — ) be random variables with X measur-
able with respect to G — F and Y is independent of G. If ¢ : X x ) — R is a measurable
function such that ¢(X,Y) is integrable, then

E(p(X, Y)|9)(w) = E(p(X(),Y), a.s.

9.5.4 Disintegration and Orthogonal Projection

Let G be a sub-c-algebra of a c-algebra F. Since L?(f), F, P) is a Hilbert space and
L?(Q,G, P) is a closed subspace of L?, let 7 denote the orthogonal projection defined
by the projection theorem ( §II.2 Functional Analysis [15]),

7 L*(Q, F,P) — L*(Q,G, P).

f—n(f) L L*(Q,G,P)

nfeL*Q,G,P)
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We will see below that the conditional expectation of an L? function is precisely its
L? orthogonal projection to L?(,G, P). We give below second proof for the existence
of conditional expectations.

Proof (1) Let X € L%(Q, F, P). Then for any h e L?(Q,G, P),

(X —7X,h)120,7.p) = 0.

f XhdP = J X)hdP

Let A€ G and take h = 14 to see that

This is,

X = E{X|G}.

(2) Let X € L! with X > 0. Let 0 < < X2 < ... be a sequence of bounded positive
functions (increasing with n) converglng to X pointwise. Then X, € L2, {rX,} exists,
and are positive. Furthermore for any A € G,

J X, dP = f X, dP
A A
Since,

0<14X1<14X0<...,

lim,,_, o, 7X,, exists. By the monotone convergence theorem,

f XdP = lim X dP = hm X, dP = lim 7 X, dP.

(3) Finally for X € L' not necessarily positive, let X = X* — X~ and define E{X|G} =
E{XT|G} — E{X|G}.
U

Remark 9.5.11 Let X ¢ L%(Q,F,P). Then nX is the unique element of L%(Q,G, P)
such that

E|X —7X|?= min E|X -Y]%.
YeL2(Q,G,P)

9.5.5 Note on filtering

At this point we note a simple problem from Filtering Theory. Let Y; be the observation
process of a signal process. What is the best estimation for X; given {Y;,s < ¢t}? We
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have seen that in the L? case, the conditional expectation is an L? minimizer. We
therefore define the L? estimator to be:

X = E{X;|o{Y;: 0< s < t}}.

The concern in filtering is to find the conditional distribution, and the conditional
density when it exists, of X (¢) given Y (¢).

In linear filtering, we assume that
t ¢
Xi(w) = Xo(w) + Wi(w) + J F(s)Xs(w)ds + J f(s)ds
0 0

Yi(w) = Jo H(s)Xsds + Jo h(s)ds + Bi(w).

Here {(W,), (B;)} are independent Brownian motions and both independent of X,. We
assume that F, f,H,h : R, — R are bounded measurable functions. This leads to
Karman Filter, linear filtering and Zakai equation.

9.6 Uniform Integrability

Let (Q, F, 1) be a (o-finite) measure space, and I an index set.

Definition 9.6.1 A family of real-valued measurable functions (f,,a € I) is uniformly
integrable (u.i.) if

lim sup | faldp = 0.
C=% ael J{|fal>C}

Lemma 9.6.2 (Uniform Integrability of Conditional Expectations) Let X : @ — R
be in L'. Then the family of functions

{E{X|G}: G is a sub o-algebra of F}

is uniformly integrable.
Proof exercise. ]

Theorem 9.6.3 (Vitali Theorem) Let f,, € LP(u), p € [1,0]. Then the following is equiva-
lent.

e, .
1. f, = f,le. lim, o | fn— flp = 0.
2. {|fn|P} is uniformly integrable and f,, — f in measure.

3. §|fulPdp — §|fIPdp and f, — f in measure.
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9.7 Uniformly absolute continuity

Let (S, A, u) be a measure space. Let f, f, : S — R be Borel measurable functions.

Proposition 9.7.1 If f € L'(u) where p is a o-finite measure, for every ¢ > 0 there is
d > 0 such that for all A with pu(A) <46,

Llfldu <e.

Proof We define a measure v(A) = {, fdu. Itis a signed measure with both the positive
and negative part absolutely continuous w.r.t. x. By considering v™, v~ separately, we
may and will assume that f > 0 and v is a positive measure. If the conclusion does
not hold, there exists a positive number ¢ such that for each n there is a set A,, with
1(A,) < 57 and

() = | Ifldn > e
An
Let A= n); UL, Ak Then,
PA) = p(ngy Uik, Ax) = lim p(UiZ, Ag) = 0.
In particular §, fdu = 0. But,
v(A) = lirrolO (Ui, Ak) = v(Ay) > e

This gives a contradiction. O

Definition 9.7.2 A family of integrable real valued random functions {f,} is uni-
formly absolutely continuous if for every ¢ > 0 there is a number 6 > 0 such that
if a measurable set A has p(A4) < § then for all « € 1

| Vel <.
A

Proposition 9.7.3 Let i be a finite measure. Let (f,,«a € I) be a family of integrable
real valued functions. The following statements are equivalent:

(1) (fa,a € I) is uniformly integrable (u.i.)
(2) (fa,€I) is L' bounded and uniformly absolutely continuous.

(3) (de la Vallee-Poussin criterion) There exists an increasing convex function ® : Ry —
R, such thatlim,_,, q)gf) = o0 and sup, E(®(|fa|)) < 0.
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Proposition 9.7.4 Let (S, A, 1) be a measure space. Suppose that f, : S — R belongs
to L'.
1. If f, — f in L' then {f,} is L' bounded.

2. If f, — f in L', then {f,} is uniformly absolutely continuous. See exercise 11,
section 3.2 in [4].

3. Suppose that . is a finite measure. If f, — f in measure and {f,} is uniformly
absolutely continuous then f, — f in L.
Proof By Riesz-Fisher theorem, the L' space is a complete Banach space. (1) is
obvious.

(2)Suppose that f,, — f in L. For any ¢ > 0 there is N(¢) such that

sup [ If,  fldu < ¢/2

n=N

Let o > 0 be such that if y(A) < « then

J | fldp < €/2, sup j | fildp < €.
A k A

<N-1
Forn > N,
N R R
(3) We may assume that y = P is a probability measure.

Suppose that {f,} is uniformly absolutely continuous and f,, — f in measure, i.e.
for any € > 0,
i €
lim P(|fn—fl>3) =0.
Let e > 0. Choose §(¢) > 0, such that if F is a measurable set with u(FE) < 4,

supj | fnldP < €/3, J |fldP < €/3.
n E E

There exists N(e, §) such that for P(|f, — f| > ¢/3) < 6 whenever n > N(J,¢). For such

n,

f\fn ~ fldP < f o — fldP +f faldP +f flaP < c.
[fn—fI<3 lfn=fl>35 [fn=fl>3%

It follows that f,, — f in L'.
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