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Chapter 1

Introduction

1.1 Introduction

A multi-scale stochastic system models a set of particles or objects of interest that
evolve at different scales, are subject to randomness, and interact with each other.
Of particular interest are two-scale stochastic differential equations, where a slow
variable evolves in a rapidly changing random environment. For example, consider
the equation:

dxεt “ gpxεt , ϵ, y
ϵ
tqdt`

m
ÿ

k“1

fkpxεt , ϵ, y
ϵ
tqdW

k
t ,

where W k
t are independent Brownian motions, x-variable takes value in a space X ,

and the y-variable takes values in a space Y. The parameter ϵ serves as an indicator
for the separation of the time scales. In this setting, the slow variable is xϵt evolving
in its natural scale; while yϵt evolves on a faster time scale, specifically 1

ϵ . It is often
the case yϵt “ ỹϵt{ϵ, while both ỹϵt and xϵt are two stochastic processes evolving on the
same time scale. Slow/ fast stochastic dynamics, with two scales, holds significant
potential for applications.

Multi-scale systems are often observed in classical mechanics, particularly in the
case of small perturbations to Hamiltonian systems, or more generally, in perturba-
tions to dynamical systems with conservation laws. A key goal is to study the effect of
these perturbations on the evolution of the Hamiltonian or energy along the system’s
trajectories. Multi-scale behaviour often emerges in the form of an ϵ-expansion of the
perturbation.

Multi-scale dynamics are also observed in neuron response dynamics. The effect of
a spike on a neuron’s membrane potential can be quantified by the difference between

7



1.1. INTRODUCTION 8

the interior of the cell and its surroundings. Depending on the sign of this change, the
effect can be excitatory or inhibitory. After the spike arrives, the neuron’s potential
returns to its resting state.

In a generic two-dimensional neuron evolution model [5], the equations are as
follows:

9uptq “ fpu,wq ` I, 9wptq “ ϵbpu,wq,

where I is the current that does not directly affect the spike w, but a change in poten-
tial leads to a small movement in the spike. A spike induces a significant movement
in neuron potential. The firing of a spike can seem random, and the second equation
can be replaced with a diffusion model. This model can be further simplified to a
single equation as the separation scale parameter ϵ tends to zero.

In nature, multi-time scale phenomena are widespread. Klaus Hasselmann, a
German oceanographer and climate modeller, was awarded the Nobel Prize in Physics
for his groundbreaking work on climate science. He proposed a dynamical system
that describes the interaction between climate and weather, where climate evolves at
a slower pace compared to the rapidly changing weather. Quoting from the Nobel
Prize webpage:

“Our world is full of complex systems characterised by randomness and disorder.
One complex system of vital importance to humankind is Earth’s climate. In the
1970s, Klaus Hasselmann created a model that links together weather and climate,
thus answering the question of why climate models can be reliable despite weather
being changeable and chaotic.”

Randomness, whether perceived or intrinsic, must be accounted for. Multiple
time-scale stochastic ordinary differential equations and stochastic partial differen-
tial equations have also emerged as promising tools in biological and social sciences
[12]. For example, in biomedical research, a patient’s observables can be viewed as
a stochastic system interacting with drug treatments that operate at the cellular and
molecular levels.

The model of physical Brownian motion developed by Smoluchowski, Langevin,
Ornstein, and Uhlenbeck can be transformed into a two-scale system. Consider the
position of a particle of small mass ϵ, where the velocity field is governed by the
Ornstein-Uhlenbeck process:

9xϵt “ yϵt

dyϵt “ ´
1

ϵ
yϵt `

1

ϵ
dWt.

In a more complex scenario yϵt receives a feedback from the x-variable. For example,
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introducing friction into the model yields the equation [13]:

dyϵt “ fpxϵtq ´ yϵt ` dWt.

1.1.1 Some slow / fast models

We point out some slow /fast stochastis differential equations.

1. Stochastic Averaging of SDEs and SPDEs. Consider a stochastic averaging prob-
lem of SDEs:

dxεt “ gpxεt , y
ϵ
t
ϵ
qdt`

m
ÿ

k“1

fkpxεt , y
ϵ
t
ϵ
qdW k

t ,

where tW k
t u are independent Brownian motions.

Assume for simplicity m “ 1, and xϵt and yϵt are real valued stochastic processes
for which the following equation

dxεt “ fpxεt , y
ϵ
t
ϵ
qdWt, xϵt “ x0

are satisfied. Then the quadratic variation of the solution satisfies:

xxϵyt “

ż t

0
f2pxεs, y

ϵ
s
ϵ
qds.

This naiive computation indeed pointing a way for obtaining the effective dynam-
ics, by martingale problem.

2. The averaging principle is a law of large numbers, from here we may study fluc-
tuations, e.g.

xϵt ´ x̄t
?
ϵ

.

Consider for example

9xϵt “
1

?
ϵ
gpxϵt, y t

ϵ
q.

3. Stochastic Averaging for Non-Markovian system.

Take for example SDEs driven by fractional Brownian motions BH
t :

dxεt “ gpxεt , y
ϵ
t
ϵ
qdt`

m
ÿ

k“1

fpxεt , y
ϵ
t
ϵ
qdBH

t .
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1.2 An example of an averaging principle – Week 1

In highly oscillatory dynamical systems, averaging techniques can be used to simplify
the analysis. The resulting averaged system approximates the original dynamics when
there is a large separation of time scales.

Let Y denote a metric space with distance function d, and let g : Rd ˆ Y Ñ Rd be a
Borel measurable function. Consider a system with a constant of motion and a small
perturbation:

9uϵt “ ϵgpuϵt, ytq,

where ϵ is a small parameter indicating the magnitude of the perturbation.

By rescaling time as t ÞÑ t{ϵ, we obtain the following rescaled problem:

9xϵt “ gpxϵt, y t
ϵ
q.

In this setting, ϵ controls the separation of time scales. As ϵ Ñ 0, the term y t
ϵ

evolves
on a much faster time scale compared to xϵt.

We typically assume that yt is ergodic. This means that the time-average of the
vector field gpx, ytq, as yt evolves with time, converges in probability to a deterministic
vector field ḡ on Rd, for every x in Rd. Tis ergodicity ensures that, over long time
intervals, on the time scale r0, 1ε s, the fast yt-dynamics average out, leaving a persistent
influence on the slower xεt -dynamics.

The following defines the weak ergodic condition.

Definition 1.2.1 We say that the pair, g and pyϵtq, satisfies the weak ergodic con-
dition, if for any x, there exists a point ḡpxq P Rd such that for any δ ą 0 and any
0 ď s ď t,

lim
ϵÑ0

Ppω : |
1

t´ s

ż t

s
gpx, y r

ϵ
pωqqdr ´ ḡpxq| ą δq “ 0. (1.1)

This condition essentially indicates that, over time, the process yt loses memory of
its initial state, and the dynamics governed by gpx, ytq become predictable in the long
run, with fluctuations around ḡpxq vanishing as T Ñ 8.

In fact, in place of (1.2), we may assume i.e. for any δ ą 0 and any T ą 0, and
uniformly in t ą 0,

lim
TÑ8

Ppω : |
1

T

ż t`T

t
gpx, yϵspωqqds´ ḡpxq| ą δq “ 0. (1.2)
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We further assume that g is Lipschitz continuous. Specifically, there exists a con-
stant |g|Lip such that for all x, x1 P Rd, and y, y1 P Y,

|gpx, yq ´ gpx1 ´ y1q| ď |g|Lipp|x´ x1| ` dpy, y1qq. (1.3)

Lemma 1.2.2 Suppose that g is bounded and Lipschitz continuous, and gpyϵtq satisfies
(1.2). Consider:

d

dt
x̄t “ ḡpx̄tq, x̄0 “ x̄p0q.

then
sup
sPr0,ts

|

ż s

0
pgpx̄r, y r

ϵ
q ´ ḡpx̄rqqdr

ˇ

ˇ

ˇ
Ñ 0

in probability.

Proof Observing that ḡ is bounded, Lipschitz continuous, and |x̄t ´ x̄s| ď |g|Lip|t ´ s|.
Write yϵr “ y r

ϵ
. Let 0 ď s1 ă . . . , sn denotes a uniform partition of r0, ts.

ż s

0
gpx̄r, y

ϵ
rqq ´ ḡpx̄rqqdr “

ÿ

i

ż si`1

si

pgpx̄r, y
ϵ
rqq ´ ḡpx̄rqqdr

“
ÿ

i

ż si`1

si

drrpgpx̄r, y
ϵ
rqq ´ gpx̄si , y

ϵ
rqqq ` pgpx̄si , y

ϵ
rqq ´ ḡpx̄siqq ` pḡpx̄siq ´ ḡpxrqqs.

Note that

|
ÿ

i

ż si`1

si

pgpx̄r, y
ϵ
rqq ´ gpx̄si , y

ϵ
rqqqdr|ď

ÿ

i

ż si`1

si

K|x̄r ´ x̄si |dr ď
ÿ

i

p∆siq
2 À

1

n
.

which converges to zero as n is taken to infinity. A similar computation applies to the
third term. Now fixing n, as ϵ Ñ 0,

ÿ

i

ż si`1

si

pgpx̄si , y
ϵ
rqq ´ ḡpx̄siqqdr Ñ 0

in probability. Consequently,

|
ÿ

i

ż si`1

si

pgpx̄r, y
ϵ
rqq ´ gpx̄si , y

ϵ
rqqqdr| À

1

n
`
ÿ

i

ż si`1

si

pgpx̄si , y r
ϵ
q ´ ḡpx̄siqqdr Ñ 0,

as we take ϵ Ñ 0 then take n Ñ 8. l

To work with the convergence of solutions, iterative method or maximal principle
lead to a large collection of very useful inequality. They go by the name of Gronwall
inequality, referring to Gronwall’s work published in 1919 [6].
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Lemma 1.2.3 (Gronwall Inequality) Let u and β be non-negative, continuous func-
tions on ra, bs, for which the inequality

uptq ď C `

ż t

0
βpsqupsqds, a ď t ď b

holds, where C is a non-negative constant, then

uptq ď C expp

ż t

a
βpsqdsq, a ď t ď b.

Lemma 1.2.4 [9] Let u, α, and β be piecewise continuous functions on r0, T s, and β is
non-negative on this interval. If

uptq ď αptq `

ż t

0
βpsqupsqds, 0 ď t ď T

then

uptq ď αptq `

ż t

0
αpsqβpsq expp

ż t

s
βprqdrqds, 0 ď t ď T.

See also [1].

Proposition 1.2.5 Assume that g is bounded and Lipschitz continuous, satisfying (1.2).
Let xp0, ϵq be Rd valued random variables converging to x̄p0q in probability. Consider the
solution of the equation

9xϵt “ gpxϵt, y
ϵ
tq, xϵ0 “ xp0, ϵq, (1.4)

Then, for any δ ą 0,
lim
ϵÑ0

Pp sup
sPr0,T s

|xϵs ´ x̄s| ą δq “ 0,

where d
dt x̄t “ ḡpx̄tq and x̄0 “ x̄p0q.

Proof This is simply a corollary of Lemma 1.2.2. Firstly,

xϵt ´ x̄t “ xp0, ϵq ´ x̄p0q `

ż t

0
pgpxϵr, y

ϵ
rq ´ gpx̄r, y

ϵ
rqqdr `

ż t

0
pgpx̄r, y

ϵ
rq ´ ḡpx̄rqqqdr

Then,

sup
sďt

|xϵs ´ x̄s| ď |xp0, ϵq ´ x̄p0q| `K

ż t

0
sup
sďr

|xϵs ´ x̄s|dr ` |

ż t

0
pgpx̄r, y

ϵ
rq ´ b̄px̄rqqqdr|.

Set
αϵptq “ |xp0, ϵq ´ x̄p0q| ` sup

sPr0,ts

|

ż s

0
pgpx̄r, y

ϵ
rq ´ ḡpx̄rqqqdr|.
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By Grownall’s inequality,

sup
sďt

|xϵs ´ x̄s| ď eKt
´

|xp0, ϵq ´ x̄p0q| ` sup
sPr0,ts

|

ż s

0
pgpx̄r, y

ϵ
rq ´ ḡpx̄rqqdr

¯

.

This complete the proof. l

1.3 Notations

• PpX q denotes the set of Borel probability measures on a metric space X .

• BbpX q is the space of bounded, measurable functions X Ñ R equipped with the
sup-norm.

• BCpX q is the space of bounded continuous functions from X to R.

• C0pX q is the space of continuous functions vanishing at infinity equipped with
the sup-norm (assuming X is locally compact). To be more precise f P C0pX q if,
for any ε ą 0, there is a compact set K Ă X such that |fpxq| ď ε for all x P X zK.
This is a Banach space, provided X is locally compact. In fact, you can check
that in this case C0pX q is the closure of CcpX q, the space of continuous functions
with compact support.

Definition 1.3.1 Let p ě 1.

1. A family of Borel measurable functions tfαu on a measure space is Lp bounded
if supα

ş

|fα|p ă 8.

2. A stochastic process pXtq is Lp integrable if Ep|Xt|
pq ă 8 for all t; it is Lp bounded

if supt Ep|Xt|
pq ă 8.



Chapter 2

Basics on Stochastic Processes

Throughout,
`

Ω,F ,P
˘

is a probability space, the state space for random variables
are assumed to be a connected metric space, satisfying the complete and separable
assumptions, and endowed with its Borel σ-algebra.

Let X be a metric space and BpX q its Borel σ-algebra. Elements of BpX q are referred
as the Borel subsets of X . A measure on the measurable space pX ,BpX qq are referred
as a Borel measure. We consider only measures that assigns a finite number to every
metric ball. We denote by P pX q the space of probability measures on X .

Then the following holds:

• regular: for each Borel subset A and for each ϵ ą 0 there exists an open set U
and a closed set C such that C Ă A Ă U and µpU ´ Cq ă ε.

• tight: If µpX q ă 8, then for any ϵ ą 0 there exists a compact subset K Ă X such
that µpKq ą 1 ´ ϵ

2.1 Distributions of stochastic processes

Let X be a metric space. A random variable on X is simply a Borel measurable
function from Ω to X ; a stochastic processes pXtq on X is a collection of random
variables parametrized by an index set I Ă R. As is customary, we denote the time-
variable of stochastic processes with a subscript and we often omit the round bracket
for notational simplicity.

If Xα, where α P I, are metric spaces, the product space ΠαPIXα tis equipped with
the product σ-algebra such that each coordinate map: πα : ΠαXα Ñ Xα is measurable.

14
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It is generated sets of the form ΠαPIAi where Ai P BpXαq, with only finitely many Aα

not equal to the whole space. Such sets are referred to as cylindrical sets.

A stochastic process Xt is a measurable map from Ω Ñ ΠαX , its probability distri-
bution is the pushforward measure pX¨q˚P on ΠαX . The distribution of a stochastic
process are determined by their finite dimensional distributions.

Definition 2.1.1 Let pXt, t P Iq be a stochastic process. The finite-dimensional dis-
tribution of the process at time t1, . . . tn, where t1 ă t2 ă ¨ ¨ ¨ ă tn, ti P I, is the joint
distribution of pXt1 , . . . , Xtnq:

µt1,...,tnpΠn
i“1Aiq “ Pptω : Xt1pωq P A1, . . . , Xtnpωq P Anu,

where Ai are Borel measurable subsets of X . The collection of such probability mea-
sures is called the finite dimensional distributions of pXtq.

We denote pXt1 P A1, . . . , Xtn P Anq :“ tω : Xt1pωq P A1, . . . , Xtnpωq P Anu.

Definition 2.1.2 For any t1 ă ¨ ¨ ¨ ă tn, there is a projection πt1,...tnX I Ñ X n defined by

πt1,...tnpσq “ pσpt1q, . . . , σptnqq.

The following theorem guarantees the existence of a stochastic process with given
finite-dimensional distributions.

Theorem 2.1.3 (Kolmogorov’s extension theorem) Suppose that a family of proba-
bility measures tµt1,...,tnu are given, where n runs through all times points t1 ă t2 ă . . . , tn,
ti P I, satisfying the following consistency conditions. For any n P N, any t1 ă ¨ ¨ ¨ ă tn`1,
ti P I, and for any Ai P BpX q, the following statements hold:

(1)
µt1,...,tn`1pA1 ˆ ¨ ¨ ¨ ˆAn ˆ X q “ µt1,...,tnpΠn

i“1Aiq,

(2) for any permutation σ of t1, . . . , nu,

µt1,...,tnpA1 ˆ ¨ ¨ ¨ ˆAnq “ µtσp1q,...,tσpnq
pAσp1q ˆ ¨ ¨ ¨ ˆAσpnqq.

Then there exists a measure on X I such that its finite dimensional projections agreeing
with µt1,...,tn . Consequently, there exists a stochastic process pXtq on some probability
space such that

µt1,...,tnpΠn
i“1Aiq “ Pptω : Xt1pωq P A1, . . . , Xtnpωq P Anuq.
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A stochastic process is easy to analyze, if any family of random variables tXt1 , . . . Xtnu

are independent, in which case µt1,...,tn “ Πn
i“1µti. For stochastic integrals, the simplest

are those whose increments are independent.

Definition 2.1.4 A stochastic process pYt, t ě 0q is stationary if its finite dimensional
distributions are invariant under translations, i.e. for any s ą 0,

pYt1`s, . . . Ytm`sq
law
“ pYt1 , . . . Ytmq.

Exercise 2.1.5 Construct an example of a stochastic process for which the proba-
bility distribution of its one time marginals are the same for all time, but it is not
stationary.

2.2 Measure Separating sets

Definition 2.2.1 A collection E of measurable functions is said to be measure sepa-
rating (or measure determining) if, for any two probability measures µ and ν on X ,

ż

X
fdµ “

ż

X
fdν @f P E ñ µ “ ν.

The set of functions BbpX q is clearly measure determining, however it is often to be
too large to be of any use. In fact, BbpX q is not separable. It is sufficient to test these
on the set of uniformly continuous functions.

If f : X Ñ R we denote f` denotes its positive part: f`pxq “ maxpfpxq, 0q.

Theorem 2.2.2 [14, Thm. 5.9, pp39] Let X be a metric space, and let µ, ν be two
probability measures on X . If

ż

X
fdµ “

ż

X
fdν

for every bounded and uniformly continuous function f : X Ñ R, then µ “ ν.

Proof Since probability measures on a metric space are regular, they are determined
by their values on closed sets. It is sufficient to show that µpCq “ νpCq for any closed
set C. Let C be a closed set, define a sequence of functions fn : X Ñ R by

fnpxq “ p1 ´ n dpx,Cqq`

where dpx,Cq “ infyPC dpx, yq. We have fnpxq “ 0 for x P C. Sincedpx,Cq ą 0 for x R C,
fnpxq Ñ 0 as n Ñ 8. Therefore fnpxq ě 1C and each fn is Lipschitz continuous:

|fnpxq ´ fnpzq| ď ndpx, zq.
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For each n,
ż

X
fndµ “

ż

X
fndν.

Taking limit n Ñ 8 and noting that |fn| ď 1, we can interchange the limit and the
integrals (by the Dominated Convergence Theorem). Thus µpCq “

ş

fdµ “
ş

fdν “ νpCq

for all closed sets, concluding that the two measures are the same. l

Definition 2.2.3 Let X be a metric space. A set of functions is said to separate points
if for any x ­“ y in M , there exists a function f such that fpxq ­“ fpyq.

The collection of functions of the form tdpx, ¨q ^ 1 : x P X u are bounded continuous
functions, and separate points. Pointing separating is a fairly weak property, for
example the set of linear functions on Rn separate point.

A subset M of CpX ;Rq is an algebra if it is a vector space and fg P M whenever
f P M and g P M . The following theorem holds for any compact Hausdorff space.

Theorem 2.2.4 (The Stone-Weierstrass Theorem.) Let X be a compact metric space
and let A be a closed sub-algebra of CpX ,Rq that contains the constant functions and
separates points, then M “ CpX ;Rq.

With Theorem 2.2.2, we prove the following theorem, taken from Theorem 4.5 in
Chapter 3 [3, pp.113 ].

Theorem 2.2.5 Let pX , dq be a complete separable metric space. Let M be a sub-
algebra of bounded continuous functions separating points, then M is measure sep-
arating.

Proof Let µ and ν be two probability measures on X such that
ş

gdµ “
ş

gdν for all
g P M . Define H “ tf ` a : f P M,a P Ru. Then H is a sub-algebra of CbpX q containing
the constants and is point separating. Since µpX q “ 1 “ νpX q, for any h P H,

ż

X
hdµ “

ż

X
hdν.

If fn P H converges to f in the uniform norm, then it follows that
ş

X fdµ “
ş

X fdν. If X
is compact, by the Stone-Weierstrass Theorem, the closure of H equals CpX ;Rq, and
the theorem is proved.

Otherwise, we use Theorem 2.2.2 to show
ş

fdµ “
ş

fdν for any bounded uniformly
continuous function f .
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By tightness, for any ϵ ą 0, there exists a compact set K Ă Xsuch that µpKεq ą 1´ε

and νpKεq ą 1 ´ ε. By the Stone-Wiererstrass theorem, there exists gn P H such that
gn that approximates g uniformly on Kε:

lim
nÑ8

sup
xPKε

|gnpxq ´ gpxq| “ 0. (2.1)

Note that gn depends on ϵ.

Consider the function φϵpxq “ xe´ϵx2
. As ϵ Ñ 0, we have φϵpxq Ñ x. Since |φϵpgq|8 ď

|g|8 for any bounded function g, by the Dominated Convergence Theorem, we obtain:

|

ż

X
gdµ´

ż

X
gdν| “ lim

ϵÑ0
|

ż

X
φεpgqdµ´

ż

X
φεpgqdν|.

On the other hand,

|

ż

X
φεpgqdµ´

ż

X
φεpgqdν| ď

ˇ

ˇ

ˇ

ż

X
pφεpgq ´ φεpgnqq dµ

ˇ

ˇ

ˇ
` |

ż

X
φεpgnqdµ´

ż

X
φεpgnqdν|

`

ˇ

ˇ

ˇ

ż

X
pφεpgnq ´ φεpgqqdν

ˇ

ˇ

ˇ
.

Observe that |φε|8 ď C?
ϵ

where C “ supx xe
´x2

. Since µpX zKϵq ď ε, we can write

lim sup
nÑ8

ˇ

ˇ

ˇ

ż

X
pφεpgq ´ φεpgnqq dµ

ˇ

ˇ

ˇ

ď lim sup
nÑ8

ˇ

ˇ

ˇ

ż

Kϵ

pφεpgq ´ φϵpgnqq dµ
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ż

X zKε

pφεpgq ´ φεpgnqq dµ
ˇ

ˇ

ˇ
.

This leads to
lim sup

nÑ8

ˇ

ˇ

ˇ

ż

X
pφεpgq ´ φεpgnqq dµ

ˇ

ˇ

ˇ
ď µppKεqcq

2C
?
ϵ

“ 2C
?
ϵ.

For the first term, we applied the result in (2.1) and used the Dominated Conver-
gence Theorem. By applying the same argument to ν, we obtain

lim sup
nÑ8

ˇ

ˇ

ˇ

ż

X
pφεpgq ´ φεpgnqq dν

ˇ

ˇ

ˇ
ď 2C

?
ϵ.

It remains to show that
ż

X
φεpgnqdµ “

ż

X
φεpgnqdν,

for which it is sufficient to demonstrate that φεpgnq belongs to the closure of H.

Let Pm,ϵ denote the Taylor expansion of φϵ : R Ñ R, a smooth function, up to
order m. Using the property that gn P H and that H is an algebra, we conclude that
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Pm,ε ˝ gn P H. Taylor expansions of smooth functions converges uniformly on any
bounded set K:

lim
mÑ8

sup
xPK

|Pm,εpxq ´ φεpxq| “ 0.

Moreover, fixing ϵ, since gn and g are uniformly bounded, we have Pm,ε ˝ gn Ñ φε ˝ gn
uniformly on X as m approaches infinity. Therefore φεpgnq P H̄, the closure of H in the
uniform topology.

From this, we deduce:
ż

X
φεpgnqdµ “

ż

X
φεpgnqdν,

allowing to conclude that
ş

X g dµ “
ş

X gdµ for any g P CbpX q, and hence µ “ ν by
Theorem 2.2.2. l

Therefore on Rd, the space of continuous functions with compact support is mea-
sure separating, and so are the space of smooth functions on compact supports. This
can be verified with Urysohn’s lemma and smooth Urysohn’s lemma.

Let CKpX q denote the space of continuous functions on X with compact support.
Let C0pX q denote the space of real-valued continuous functions on X that vanishes
at infinity, which means that for any ϵ ą 0 there exists a compact set K such that
|fpxq| ă ϵ.

A proof for the following statements can be found in [4, pp132,245]:

Proposition 2.2.6 If X is a locally compact separable metric space, then C0pX q is the
closure of CKpX q in the uniform metric.

It follows that if X is a locally compact separable metric space, then C0pX q is an
algebra of CpX ;Rq and is measure separating.

Proposition 2.2.7 The space C8
K is dense in C0pRnq, and is therefore measure sepa-

rating.

If f P C0pRnq, then φϵ P C8
K for any φ positive, smooth with compact support with

φϵpxq “ ϵ´nφpxϵ q, normalised so that }φ}1 “ 1. Then if f is uniformly continuous and
bounded, f ˚ φϵ Ñ φ uniformly.

For probability measures on Rn with bounded supports, the set of polynomials are
measure separating. If the restrictions of two probability measures on Rn on balls
agree, they are the same. These tao statement do not imply that polynomials are
measure determining on Rn. If the sequence of moments of a random variable grows
too fast, they do not determine the distribution. Therefore the set of all polynomials
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are not measure separating on Rn. Note that the integrals of polynomials of two mea-
sures agree do not imply that the integrals of polynomials of two measures restricted
to balls equal.

Let us now turn to product spaces, this will be useful for studying the finite di-
mensional distributions of a stochastic process. Let Xi, be metric spaces, then the
product space Π8

i“1Xi is metrisable. The product space inherits the completeness and
separability properties.

Proposition 2.2.8 [3, Thm 4.6, pp115] Let Xi be complete separable metric spaces,
and Ek Ă CbpXkq is measure separating. Then

L “ tfpxq “ Πn
i“1fipxiq : fi P Ek Y t1u, n ě 1u

is measure separating on Π8
i“1Xi.

2.3 Convergence determining set

Let PpX q denote the set of all probability measures on a metric space X .

Definition 2.3.1 Let µn, µ P PpX q. We say that µ Ñ µ weakly, if

lim
nÑ8

fdµn “

ż

fdµ,

for every real-valued, bounded, and continuous function f on X .

Let xn, x P X . The sequence δxn converges weakly if and only if xn Ñ x.

Proposition 2.3.2 (Portmanteau Theorem) The following statements are equivalent:

(1) µ converges to µ weakly,

(2) limnÑ8

ş

fdµn “
ş

fdµ, for every real-valued, bounded and uniformly continuous
function f on X .

(3) lim supnÑ8 µnpF q ď µpF q for all closed set F .

(4) lim infnÑ8 µnpGq ě µpGq for all open set G.

Proposition 2.3.3 A sequence µn P PpX q converges to µ P PpX q if and only if every
subsequence of µn has a further subsequence that converges to µ weakly.
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Proof The only if part is clear. We show the converse. If µn does not converge to µ

weakly, then there exists f P CbpX q such that an :“
ş

fdµn does not converge to
ş

fdµ.
Consequently, for some ϵ ą 0, there exists a subsequence ank

with |ank
´
ş

fdµ| ą ϵ,
which contradicts the assumption. l

Definition 2.3.4 A family A of probability measures is said to be relatively compact
if every sequence from A contains a weakly convergence subsequence.

We give a ‘compactness’ theorem that provides us with a very useful criteria to
check whether a given sequence of probability measures has a convergent subse-
quence. In order to state this criteria, let us first introduce the notion of ‘tightness’.

By tightness we mean that the measure is tightly packed into a small space, by
‘small’ we we mean the total mass can be almost packed into a compact set.

Definition 2.3.5 Let M Ă PpX q be an arbitrary subset of the set of probability mea-
sures on some topological space X . We say that M is (uniformly) tight if, for every
ε ą 0 there exists a compact set K Ă X such that µpX zKq ă ϵ for every µ P M.

By Lemma 9.2.5, every finite family of probability measures on a complete separa-
ble metric space is tight. One can show that: if tµnu is a tight sequence of probability
measures on a complete separable metric space, then there exists a probability mea-
sure µ on X and a subsequence µnk

such that µnk
Ñ µ weakly.

If tXnu is a a sequence of random variables with supn E|Xn| ă 8, then t|Xn|u is
tight. This is due to Markov-Chebychev inequality

Pp|Xn| ą aq ď
1

a
E|Xn| Ñ 0

as a Ñ 8.

Example 2.3.6 Let M be a subset of PpRq. Suppose that there exists a non-decreasing
function φ : r0,8q Ñ r0,8q such that limxÑ8 φpxq “ 8 and C “ supµPM

ş

X φp|x|qµpdxq ă

8, then M is tight.

Proof Observe that

µp|x| ě nq “

ż

|x|ěn
dµ “

ż

|x|ěn

φp|x|q

φp|x|q
dµ ď

1

φpnq

ż

|x|ěn
φp|x|qdµ

ď
C

φpnq
.

The quantity on the right hand side is the same for all µ P M , it converges to 0 uniform
in µ P M , and tightness follows. l
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Theorem 2.3.7 (Prohorov’s Theorem) If a subset of PpX q is tight, then it is relatively
compact.

Put everything together, to show that a sequence of probability measures converges,
it is sufficient to demonstrate that the sequence is tight and that any accumulation
point is the same.

There is a converse to Prohorov’s theorem:

Theorem 2.3.8 (Prohorov’s Theorem - the converse) If X is complete and separa-
ble, and if A Ă PpX q is relatively compact, then it is tight.

Once we have established that a sequence of probability measures is tight, it is
necessary to identify its limit. We discuss what set of functions to work with for this
purpose.

Definition 2.3.9 A collection E of measurable functions is said to be convergence
determining if, for any sequence µn and µ in PpX q, the following holds: whenever
limnÑ8

ş

fdµn “
ş

fdµ for all f P E, it follows that µn Ñ µ weakly.

Recall by convergence determining we refer only to probability measures.

Proposition 2.3.10 Let pX , dq be a separable metric space. The space A of uniformly
continuous functions with bounded support is convergence determining. Furthermore,
if X is locally compact, then the space of uniformly continuous functions with compact
support is also convergence determining.

Proof Let txiu be a dense subset of X . Define

fi,npxq “ 2p1 ´ n dpx, xiqq`.

For any open set G, define

φkpxq “
ÿ

ti,n“1,...,k:Bxi p 1
n

qĂGu

fi,npxq ^ 1.

Then φk is uniformly continuous with support contained in the ball centred at x1 with
radius maxiďm dpxi, x1q ` 1.

It is clear that 1G ě gm and gm Ñ 1G. Let µk, µ P PpX q be such that limnÑ8

ş

fdµn “
ş

fdµ for every f P A. Then,

lim inf
kÑ8

µkpGq ě lim inf
kÑ8

ż

gmdµk “

ż

gmdµ.
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Taking the limit k Ñ 8 allows us to conclude that µn Ñ µ. Note that the support of gk
is contained in a compact set if X is locally compact. l

Example 2.3.11 Let X “ Rn. Denote by C8
0 pRnq the space of smooth function van-

ishing at infinity, and by C8
KpRnq the set of smooth functions with compact support.

Note that C0pRnq “ CKpRnq (see proposition 4.3.5 in [4, pp.132]).

We have seen that CKpRnq is convergence determining. In fact, C8
KpRnq is dense in

C0pRnq, and thus it is measure determining.

Definition 2.3.12 A family E Ă CbpX q is said to strongly separating points if, for
every x P X and any δ ą 0, there exists a finite set tfi : i “ 1, . . . , ku from E such that

inf
y:dpy,xqěδ

max
i“1,...,k

|fipxq ´ fipyq| ą 0.

For X “ R, we can take a smooth function f with support in Bxpδ{2q such that
fpxq “ 1. Then |fpxq ´ fpyq| “ 1 if y P Bxpδq. Thus, the space C8

KpRnq strongly separates
points.

Theorem 2.3.13 Let pX , dq be a complete separable metric space. IfE is an algebra
of bounded continuous functions that strongly separates points, then E is convergence
determining.

2.4 Fourier transform of measures

Let f P L1pRn;Rq, its Fourier transform

f̂pξq “

ż

Rn
eix¨λfpxqdx, λ P Rn,

is uniformly continuous, and is bounded by the L1 norm of f : }f |8 ď }f}1. Further-
more lim|λ|Ñ8 |f̂pλq| “ 0 (Riemann-Lebesgue lemma). We can identify f with a finite
measure µpdxq “ fdx.

Likewise, if µ is a finite Borel measure on Rn, we can define its Fourier transform.

Definition 2.4.1 The Fourier transform of a finite Borel measure µ on Rn is a complex-
valued function given by the formula:

µ̂pλq “

ż

Rn
eixλ,xyµpdxq.
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The Fourier transform of a finite measure is bounded by µpRq and uniformly continu-
ous.

Proposition 2.4.2 If two finite Borel measures on Rn have the same Fourier transform,
they are equal.

Proof Firstly, if f P S, the space of Schwartz function of C8 functions of rapid de-
crease,

ż

Rn
f̂dµ “

ż

Rn
fpxqµ̂pxqdx.

If µ̂1 “ µ̂2, then
ş

Rn f̂dµ1 “
ş

Rn f̂dµ2. Since the Fourier transform is a bijection on S,
the above holds for all f P S, hence µ1 “ µ2. l

Lemma 2.4.3 If both f and f̂ are in L1, then the Fourier inversion formula holds:

fptq “
1

2π

ż

Rn
f̂pλqe´ixx,λydλ,

where x ¨ λ denotes the scalar product on Rn.

If f̂ is not integrable, we cannot apply the Fourier inversion formula, it is useful to
multiply by a rapidly decreasing function expp´ϵx2{2q.

Example 2.4.4 If pϵpx, tq “ 1?
2πϵ
e´x2

2ϵ , then p̂ϵpxq “ expp´ϵx2{2q.

Denote by γ and γn the standard Gaussian measure on R and on Rn. The Fourier

transform of γ “ 1

p2πq
n
2

exp´
|x|2

2 dx is

ż

R
eiλxγpdxq “ e´λ2σ2

2 .

and γn “ bγ, so
ż

R

ÿ

i

eiλixiγpdxq “ p

ż

R
eiλixiγipdxqn.

Theorem 2.4.5 (Lévy’s continuity theorem) Let µn, µ P PpRdq. Then if µn Ñ µweakly,
then µ̂n Ñ µ̂ pointwise. Conversely if µ̂n Ñ f pointwise and f os continuous at 0, there
exists a probability measure µ such that f “ µ̂ and µn Ñ µ weakly.
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2.4.1 Gaussian Measures

Definition 2.4.6 A Borel measure µ on Rn is Gaussian if there exists a non-negative
symmetric nˆ n matrix K and a vector m P Rn such that

ż

Rn
eixλ,xyµpdxq “ eixλ,my´ 1

2
xKλ,λy. (2.2)

Denote by γ and γn the standard Gaussian measure on R and on Rn. The Fourier

transform of γ “ 1

p2πq
n
2

exp´
|x|2

2 dx is

γ̂pλq “

ż

R
eiλx

1

p2πq
n
2

exp´
|x|2

2 dx “ e´λ2

2 .

and γn “ bNγ, so
ż

R
ei

ř

j λjxjγpdxq “ p

ż

R
eiλixiγpdxiq

n “ e´
|λ|2

2 .

Lemma 2.4.7 Let C be an invertible positive definite symmetric matrix. For α P C,
d

detC

p2πqn

ż

Rn
e´

xCx,xy

2 eαxx,yydx “ e
α2

2
xC´1y,yy.

Proof: First assume that α P R, then the left hand side of the required equality equals

p2πq´n
2

?
detC

ż

Rn
e´ 1

2xCpx´αC´1yq,x´αC´1yydx e
α2

2
xC´1y,yy

“ p2πq´n
2

?
detCe

α2

2
xC´1y,yy

ż

Rn
e´ 1

2
xCx,xydx

“ e
α2

2
xC´1y,yy

by translation invariance of the Lebesgue measures. The result holds for α P C since
both sides of the equality are analytic functions of α and they agree on R.

If K is a symmetric non-degenerate matrix, and m P Rn, by translation invariance,
we see that then

µ :“
1

a

p2πqn detpKq
e´ 1

2
xK´1px´mq, x´mydx

is a Gaussian measure with Fourier transform µ̂pλq “ exλ,my´ 1
2

xKλ,λy.

Define the heat kernel on Rn:

ptpx, yq “
1

?
2πt

e´
|x´y|2

2t .
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Example 2.4.8 On the real line, a Gaussian measure has the Fourier transform

µ̂pλq “ eiλm´σ2λ2

2 . It is either a Dirac measure, δm, or it is absolutely continuous
with respect to the Lebesgue measure with density pσ2pm,xq where m “

ş

R xµpdxq is
the mean and σ2 “

ş

R x
2µpdxq is its variance.

Recall that
ż

X
φ ˝ f dµ “

ż

Y
φ dpf˚µq.

Observe that
ş

Rn eixℓ,xyqµpdxq “ pℓ̂˚µqp1q where the second ℓ denote the linear functional
x ÞÑ xℓ, xyq. Hence (2.2) is equivalent to pℓ̂˚µqp1qeixλ,my´ 1

2
xKλ,λy.

Proposition 2.4.9 A Borel measure µ on Rn is a Gaussian measure if and only if for
every linear functional, ℓ : Rn Ñ R, the push-forward measure ℓ˚µ on R is Gaussian.
The Gaussian measure µ has a density with respect to the Lebesgue measure if and
only if K is non-degenerate in which case the density is

1
a

p2πqn detpKq
e´ 1

2
xK´1px´mq, x´my.

Proof Let µ be a Gaussian measure on Rn, with Fourier transform given by (2.2). Let
ℓ : Rn Ñ R be linear, then ℓpxq “ xℓ7, xy for some ℓ7 P Rn. For λ P R,

pℓ̂˚µqpλq “

ż

R
eiλtℓ˚µpdtq “

ż

Rn
eiλℓpxqµpdxq

“

ż

Rn
eixℓ

7,λxyµpdxq “ eiλxℓ7,my´λ2

2
xKℓ7,ℓ7y,

the last step follows from (2.2). Therefore ℓ˚µ is a Gaussian measure with mean xℓ7,my

and variance xKℓ7, ℓ7y.

Suppose that for every linear functional ℓ on Rn, ℓ˚µ is Gaussian on R. Below we
identify the linear functional ℓ with ℓ#. Denote their mean and variances, respectively,
by m̃pℓq and σ2pℓq.

m̃pℓq “

ż

xℓ˚µpdxq “

ż

tℓ˚µpdtq “

ż

R
ℓpxqdµpxq, (2.3)

which is linear in ℓ so m̃pℓq “ xℓ,my for some vector m. In addition,

σ2pℓq “

ż

pt´ xℓ,myq2ℓ˚µpdtq “

ż

R
pxℓ, yy ´ xℓ,myq2µpdyq “

ż

Rn
xℓ, y ´my2µpdyq.

As a quadratic function, there exists K such that σ2pℓq “ xKℓ, ℓy. This means that

pℓ̂˚µqpaq “ eiaxℓ,my´a2

2
xKℓ,ℓy,
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which implies that
ż

Rn
eixℓ,xyqµpdxq “ pℓ̂˚µqp1q “ eixℓ,my´ 1

2
xKℓ,ℓy,

and µ is Gaussian. l

Proposition 2.4.10 If µ is a Gaussian measure determined by (2.2):
ş

Rn eixλ,xyµpdxq “

eixλ,my´ 1
2

xKλ,λy, then the vector m and K are respectively the mean and the covariance
matrix of the measure, which means that

m “

ż

Rn
xµpdxq,

and
xKu, vy “

ż

Rn
xx´m,uyxx´m, vyµpdxq.

Proof Let ℓpxq “ xi, projection to its first component, teiu the standard orthonormal
basis of Rn, then xm, eiy “

ş

xei, xyµpdxq by (2.3) , and
ż

Rn
xx´m,uyxx´m,uyµpdxq “ xKu, uy,

By polarization we obtain the formula for xKu, vy. l

2.5 Gaussian Random Variables

A random variable with a Gaussian distribution is called a Gaussian random variable.

To rephrase Proposition 2.4.10 in terms of random variables, let X “ pX1, . . . , Xnq a
random variable with Gaussian distribution µ, where µ̂ “ eixλ,my´ 1

2
xKλ,λy. Then EpXi ´

miqpXj ´ mjq “ Kij and EX “ m. Consequently, any Gaussian measure on Rn is
determined by its mean and its covariance operator. Furthermore, if K is diagonal,
the measures decomposes into products of measures on R leading to:

Corollary 2.5.1 A set of Gaussian processes pX1, . . . , Xnq is independent if and only if
their covariances vanish.

Lemma 2.5.2 Assume that a sequence of Gaussian random variables on Rd converge,
weakly, to a random variable X, then X is a Gaussian random variable.

Proof For simplicity, assume that these variables are real-valued. Let Xn Ñ X weakly.
Let mn “ EXn, and Kn the covariance matrix of Xk. Then Ereixλ,mny´ 1

2
xKλ,λys Ñ EeitX ,
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by (2.4.5), for every λ. The convergence of the left hand side implies that mn Ñ m and
xKnλ, λy converges too. Thus the Fourier transform of X is µ̂pλq “ eixλ,my´ 1

2
xKλ,λy, so

the limit is Gaussian. l

Theorem 2.5.3 If X is a Gaussian random variable on Rd with covariance operator K,
and A : Rd Ñ Rn a linear map, then AX is a Gaussian random variable with covariance
AKAT .

Proof We only need to identify E
“

eixλ,AXy
‰

for any λ P Rn:

E
“

eixλ,AXy
‰

“ E
“

eixA
Tλ,Xy

‰

“ eixA
Tλ,my´ 1

2
xKATλ,ATλy

“ eixλ,Amy´ 1
2

xAKATλ,λy.

This shows that X is a Gaussian random variable with mean Am and covariance
AKAT . l

The theorem holds also if X is Gaussian random variable on a Banach space E,
and A : E Ñ F is a bounded linear map from E to another Banach space.

Note that there exists a random variable X “ pX1, X2q with both marginals X1 and
X2 Gaussian, but X is not Gaussian.

Let Z be a standard Gaussian variable on Rd, X “ pX1, . . . , Xnq, K a matrix and C

a vector, then X “ KZ ` C has Gaussian distribution.

One of the nice properties of Gaussian random variables is the following. Let
pX1, . . . , Xnq be Jointly Gaussian random variables. Then they are independent if
and only if they are uncorrelated. Linear combinations of jointly Gaussian random
variables are jointly Gaussian.

Exercise 2.5.4 If tX1, . . . XNu are independent random variables with each Xi Gaus-
sian on Rd, and ai P R, show that

řN
i“1 aiXi is a Gaussian random variable.

Proposition 2.5.5 A random variable pX1, . . . , Xnq on Rn is Gaussian if and only if for
any ai P R,

řn
i“1 aiXi is a Gaussian random variable.

Before closing this section we introduce a useful lemma. First recall that if Aptq is
a differentiable matrix-valued function with Ap0q “ id, then

d

dt
detpAptqq|t“0 “ trp

d

dt
Ap0qq. (2.4)
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Lemma 2.5.6 Suppose that C is a positive definite n ˆ n matrix. Then the following
statements hold.

(i) If A is another symmetric nˆ n matrix, then

TraceAC´1 “

?
detC

p2πq
n
2

ż

Rn
xAx, xye´

xCx,yy

2 dx;

(ii)

pC´1qi,j “

?
detC

p2πq
n
2

ż

Rn
xixj e

´
xCx,yy

2 dx;

Proof: For (i) take h ą 0 small so C ` hA is positive, then by Lemma 2.4.7,

p2πq´n
2

ż

Rn
e´

xpC`hAqx,xy

2 dx “ detpC ` hAq´ 1
2

“ pdetCq
´ 1

2
`

detpI ` hAC´1q
˘´ 1

2 .

Differentiate for h at h “ 0:

p2πq´n
2

ż

Rn
e´

xCx,xy

2 xAx, xydx “
1

2
pdetCq

´ 1
2 traceAC´1.

For part (ii), fixing i, j, apply (i) with a matrix A whose elements Ap,q “ 0, except
Ai,j “ ´1 and Aj,i “ ´1, use symmetry of AC´1.

A Gaussian measure on a finite dimensional vector space W is the pushed forward
measure T˚pγnq for some linear map T : Rn Ñ W .

2.5.1 Probability measures on Banach spaces

It is a fact that probability measures on a Banach space is determined by the set of
its push-forward measures by linear functionals. We denote by E˚ the dual of E, it is
the set of bounded linear functionals on E.

Proposition 2.5.7 Two probability Borel measures µ and ν on a separable Banach
space are the same, if ℓ˚µ “ ℓ˚ν for all ℓ P E˚.

Proposition 2.5.8 A Borel measure µ on a Banach space E is said to be a Gaussian
measure if for every bounded linear functional, f : E Ñ R, the push-forward measure
on E is Gaussian.
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A vector m is said to be the mean of a Gaussian measure µ if for all ℓ P E˚,
ş

ℓpxqµpdxq “ ℓpmq. The linear operator K : E˚ Ñ E defined by

ℓ1pKℓq “

ż

E
ℓpxqℓ1pxqµpdxq.

is its covariance operator. If X is a random variable on Ehas distribution µ, then
EpℓpXqq “ mpXq and “ ErℓpXqℓ1pXqs “ ℓpKℓ1q.

Definition 2.5.9 Let µ be a probability measure on Banach space E, define its Fourier
transform µ̂ : E Ñ C by

µ̂pℓq “

ż

E
eiℓpxqdµpxq.

For probability measures on a Hilbert space H, by the Reisz representation theo-
rem we can identify H˚ with H by ℓ ÞÑ ℓ# for xℓ#, xy “ ℓpxq, all x P H. Then we define
µ̂ : H Ñ C by

µ̂pyq :“

ż

H
eixx,yydµpxq.

Thus µ̂pyq “ yℓ˚µ where ℓpyq “ xy, ¨y. The covariance operator K : H Ñ H is then defined
by

xKe, e1y “

ż

H
xx, ey xx, e1yµpdxq.

If H has an orthonormal basis teiu, X “
ř8

i“1Xiei is a random variable with distribu-
tion µ, then Ki,j “ ErXiXjs.

Remark 2.5.10 If µ is a probability measure on a Banach space E then µ̂ is of positive
type with µp0q “ 1 and is continuous on E˚. (i) The continuity: if ℓn Ñ ℓ in E, then
eiℓnpxq Ñ eiℓpxq for each x. The dominated convergence theorem applies.

(ii) If λ1, . . . , λN P E˚, and ξ1, . . . , ξN P C, then

N
ÿ

i,j“1

µ̂pλi ´ λjqξiξj “

ż

E
|
ÿ

ξj expiλjpxq |2dµpxq ě 0.

Theorem 2.5.11 (Bochner’s theorem) [?] The set of Fourier transformations of prob-
ability measures on Rn is precisely the set of functions µ̂ : Rn Ñ C of positive type with
µ̂p0q “ 1. Moreover each such µ̂ corresponds to a unique µ.

2.6 Gaussian Processes

Definition 2.6.1 A stochastic process on Rn is a Gaussian process if its finite dimen-
sional distributions are Gaussian measures.
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Gaussian processes are widely used to represent thermal noise in electronic de-
vices, resulting from random movement of electrons due to thermal agitation.

Let mptq “ EXt denote its mean and

Kps, tq “ EpXt ´mptqqpXs ´mpsqq

its covariance function. The finite dimensional distributions of a Gaussian process at
time pt1, . . . , tnq is determined by its mean pmpt1q, . . .mptnqq and the covariance matrix
pKpti, tjqq.

For simplicity consider a real valued Gaussian process Xt with
ş1
0 EpXtq

2dt ă 8. We
may consider X¨ as a random variable on Ω Ñ L2pr0, 1s;Rq with distribution µ. Denote
H “ L2pr0, 1s;Rq. Then, µ̂ : H Ñ R is given by

µ̂pφq “

ż

H
exf,φyL2µpdfq.

As computed with Rn case, there exists m P H and K : L2 Ñ L2 bounded linear
such that if ℓ “ xφ, ¨yH , then ℓ˚µptq is a Gaussian measure with mean xφ,myL2 and
covariance xKφ,φyL2. In fact, mptq “ EXt and Kφpsq “

ş1
0Kps, tqφpsqds.

Definition 2.6.2 A linear operator T on a Hilbert space H is positive if for any x P H,
xTx, xy ě 0. It is symmetric if for all x, y P H, xTx, yy “ xx, Tyy.

Lemma 2.6.3 Let Xt be a Gaussian process with covariance Kps, tq. Suppose that
ş1
0 EpXsq2ds ă 8 and define

Kfpsq “

ż 1

0
Kps, tqfptqdt. (2.5)

Then
ş1
0

ş1
0pKps, tqq2dsdt ă 8, and K is a positive symmetric operator on L2pr0, 1s;Rnq.

Proof We first show that K P L2pr0, 1s ˆ r0, 1sq. Let mptq “ EpXtq. Then,
ż 1

0

ż 1

0
K2ps, tqdsdt “

ż 1

0

ż 1

0
EpXt ´mptqqpXs ´mpsqqs2dsdt

ď

ż 1

0

ż 1

0
EpXt ´mptqq2EpXs ´mpsqq2dsdt “ p

ż 1

0
EpXt ´mptqq2dtq2.

Let f P L2pr0, 1s;Rnq, then
ż 1

0
pKfpsqq2ds “

ż 1

0
p

ż 1

0
Kps, tqfptqdsq2ds ď

ż 1

0

ż 1

0
pKps, tqq2dt

ż 1

0
f2ptqdtds

“ }f}L2pr0,1s;Rnq

ż 1

0

ż 1

0
pKps, tqq2dtds ă 8,
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and Kf P L2pr0, 1s;Rnq. Finally, since K is symmetric, K is symmetric,

xKf, gy “

ż 1

0

ż 1

0
EpXt ´mptqqpXs ´mpsqqs2fptqgpsqdsdt “ xKg, fy,

and

xKf, fy “

ż 1

0

ż 1

0
EpXt ´mptqqpXs ´mpsqqs2fptqfpsqdsdt “ E

ż 1

0
pXt ´mptqqfptqdtq2 ě 0,

i.e. K is positive. l

Exercise 2.6.4 Prove the multi-dimensional version of the statement in the previous
lemma.

Definition 2.6.5 A function K : r0, 1s2 Ñ R is said to be a symmetric positive kernel if
the operator K, defined by (2.5), is symmetric and positive definite.

Definition 2.6.6 Let H be a separable Hilbert space. Let tenu be an orthonormal
basis of H and T : H Ñ H a positive symmetric linear operator. Its trace is defined by

trpT q “
ÿ

n

xTen, eny,

which is independent of the choice of the basis. The operator T is said to be of trace
class if trpT q ă 8.

If T is a linear operator, not necessarily of positive type, we define |T | “
?
TT ˚, then T

is of trace class if trp|T |q ă 8.

Lemma 2.6.7 Suppose that K is a symmetric positive kernel, then

trpKq “ E
ż 1

0
pXsq2ds.

Proof Let tenu be an orthonormal basis of L2pr0, 1sq. Since K is of positive type, then

trpKq “
ÿ

i

xKeieiy “
ÿ

i

ż 1

0

ż 1

0
ErpXt ´mptqpXs ´mpsqqseiptqdteipsqds

“ E
ÿ

i

p

ż 1

0
pXt ´mptqqeiptqdtq

2 “
ÿ

i

ExX ´m, eiy
2
L2pr0,1sq “ E}X}2L2pr0,1sq,

confirming the claim. l
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Definition 2.6.8 A linear operator T : E Ñ F is compact if it takes a bounded subset
of E into a pre-compact set in F . This means precisely the following: for any bounded
sequence txnu in E there exists a convergence subsequence of Txn.

If T has finite dimensional range then it is clearly compact.

Proposition 2.6.9 [?] A trace class operator T on a separable Hilbert space is compact.
For any self-adjoint compact operator on H there exists a complete othonormal basis
tφnu such that Tφn “ λnφn where φn are real numbers.

A non-negative and compact linear operator has a countable many real eigenval-
ues, for which only 0 is a possible accumulation point, the multiplicity of any non-zero
eigenvalues if finite. In particular,

Theorem 2.6.10 (Mercer’s Theorem) [?, pp243]Riesz-Nagy] Let K : r0, 1s ˆ r0, 1s Ñ R
be a real valued symmetric, continuous kernel such that

ş1
0

ş1
0K

2ps, tqdsdt ă 8. Suppose
that

Kfptq “

ż 1

0
Kps, tqfpsqds,

is non-negative. Then,

Kps, tq “

8
ÿ

k“1

a

λkekpsqekptq

where teiu is an orthonormal sequence of eigen-functions of K and Kek “ λkek. Further-
more,

sup
s,tPr0,1s

|

N
ÿ

k“1

λkekpsqekptq ´Kps, tq| Ñ 0,

as N Ñ 8.

Note that en are non-negative and continuous.

Proposition 2.6.11 Let Xt be a mean zero Gaussian process with mean zero and co-
variance K. Assuming that K is continuous. Let teku be an orthonormal system such
that Kei “ λiei. Then,

Xt “

8
ÿ

k“1

a

λkβkek,

where tβku are independent standard Gaussian random variables, in the sense that

lim
NÑ8

E sup
tď1

|

N
ÿ

k“1

a

λkβkek ´Xt|
2 “ 0.
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Proof Set XN
t “

řN
k“1

?
λkβkek. Then

sup
tPr0,1s

E}XN
t ´XM

t |2 “ sup
tPr0,1s

E|

N
ÿ

k“M`1

a

λkβkekptq|2 “ sup
tPr0,1s

N
ÿ

k“M`1

λke
2
kptq,

which converges to zero as N,M Ñ 8. This is due to the fact that

N
ÿ

k“1

λkekpsqekptq Ñ Kps, tq

uniformly on r0, 1s2.

We denote by Xt the limit of XN
t . Since for any 0 ď t1 ă t2 ă ¨ ¨ ¨ ă tn ď 1, the

random vector pXN
t1 , . . . X

N
tnq converges in the mean square sense to pXt1 , . . . Xtnq. The

limit of Gaussian random variables are Gaussian random variables, Proposition 2.5.2,
proving that the limit process pXtq is a Gaussian process. We can identify its limit by
identifying its mean and covariance. Firstly, EpXtq “ limNÑ8 XN

t , which follows from
the L2 convergence. Similarly,

EpXN
t X

N
s q “ Ep

N
ÿ

k“1

a

λkβkekpsqqp

N
ÿ

k“1

a

λkβkekptqq “

N
ÿ

k“1

λkpekptqqpekpsqq Ñ Kps, tq.

Thus the limit Xptq is a mean zero Gaussian process with mean zero and covariance K.
l

Definition 2.6.12 The Cameron-Martin space of the Gaussian measure on the sepa-
rable metric space is the range of

?
K.

Note that if T : E Ñ F is a linear, we want to induced an inner product on T from that
on E as follows: if f “ T f̃ and g “ g̃, then xf, gy “ xf̃ , g̃y.

Let Kps, tq “ minps, tq. Taking T “
?
K in this procedure to the Gaussian distribu-

tion of a stochastic process. For example, take
?
Kfpsq “

şs
0 fprqdr. Then the range of

?
K is the Sobolev space H of finite energy.

Although we do not define the Cameron-Martin space of a measure, this concept is
indeed intrinsic to the measure, not depending on whether we view the process as in
L2pr0, 1sq on in the Wiener space. If considered on Cpr0, 1sq we view Cpr0, 1sq as a subset
of Cpr0, 1sq˚. The latter is the space of measures, so f P Cpr0, 1sq shall be identified with
the measure f dx. The covariance operator is then from Cpr0, 1sq˚ to Cpr0, 1sq:

Kµpsq “

ż 1

0
Kps, tqµpdtq.
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2.7 Brownian motion

Definition 2.7.1 A stochastic process pXt : t ě 0q is said to have independent incre-
ments if for any n P N and for any 0 ď t0 ă t1 ă ¨ ¨ ¨ ă tn, Xt1 ´ Xt0 , . . . , Xtn´tn´1 are
independent random variables.

Definition 2.7.2 A standard one dimensional Brownian motion Wt on R is a sample
continuous stochastic process starting from zero and such that

1. Wt ´Ws is a mean zero Gaussian random variable with variance t´ s,

2. W has independent increments.

In particular Wt ´Ws is independent of σpWr : 0 ď r ď sq.

Denote by FW
s :“ pWr : 0 ď r ď sq the completion of the natural filtration of pWt : t ě

0q, then by Blumenthal’s 0´ 1 law, FW
s is right continuous. However, we often need to

consider a Brownian motion in a larger information system, and the filtration we use
could be generated by multiples stochastic processes on the same filtered probability
space. For this reason we introduce yet another definition of a Brownian motion.

Definition 2.7.3 Consider a filtered probability space pΩ,F ,Pq. An pFtq-adapted stochas-
tic process pWtq with values in Rd is a Ft-Brownian motion if Wt ´ Ws is a mean zero
Gaussian random variable with variance t´ s, and if for every pair of numbers 0 ď s, t,
Wt`s ´Ws is independent of Fs.

Definition 2.7.4 An n-dimensional Brownian motion with zero initial condition is a
vector valued stochastic process Bt “ pB1

t , . . . , B
n
t q, where tBi

t : 1 ď i ď nq is family of
independent standard one dimensional Brownian motions.

Their covariance is EpBtBsq “ minps, tqInˆn where Inˆn denotes the nˆ n-matrix.

By Kolmogorov’s continuity theorem, Theorem 2.8.9 below, we can infer that a
stochastic process with |Xt ´ Xs|p ď C|t ´ s|γ for some p ą 1 and γ ą 0, this applies
to a Gaussian process with covariance EpWtWsq “ minps, tq, has a continuous version
which is furthermore locally Hölder continuous of order α ă 1

2 .

Theorem 2.7.5 A standard one Brownian motion on R, which we denote by Wt, is a
sample continuous stochastic process starting from zero and such that

1. It is a Gaussian process;

2. It has mean zero and covariance function EpWtWsq “ minps, tq.
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Proof If pXtq is a Brownian motion, then EpXtXsq “ EpXspXt ´Xsqq `EpXsq2 “ minps, tq

for s ă t, and any increment process pXt2 ´Xt1 , . . . , Xtn`1 ´Xtnq is a Gaussian process.
Suppose that the for any n times, the process pXt1 , . . . , Xtnq is Gaussian, then

pXt1 , . . . , Xtn`1q “ pXt1 , . . . , Xtn`1 ´Xtnq ´ pXt1 , . . . , Xtn , Xtnq

is Gaussian, as
řn

i“1 aiXti ` an`1Xn is Gaussian.

The other way around, assume that the process if Gaussian with mean zero and
covariance function EpWtWsq “ minps, tq, then Xptq „ Np0, tq. Check it has independent
increments by working out the covariance. l

Let ppt, x, yq :“ p2πtq
n
2 e´

|x´y|2

2t denote the heat kernel.

Proposition 2.7.6 A continuous stochastic process xt with initial value x is a Brownian
motion if its finite dimensional distributions are given by:

Ppxt1 P A1, . . . , xtn P Anq

“

ż

A1

. . .

ż

Ak

ppt1, x, y1qppt2 ´ t1, y1, y2q . . . pptk ´ tk´1, yk´1, ykqdyk . . . dy1.

Besides the Brownian motion, we have the following classes of processes:

Example 2.7.7 The Ornstein-Uhlenbeck process is a Gaussian process with covari-
ance e´β|t´s|; and the Brownian bridge, starting from the origin at time 0 and ending
at the origin at time 1, is a Gaussian process with covariance minps, tq ´ st.

It is easy to verify that Wt´tW1 is a Gaussian process, and so is e´tW2t. What are their
covariance? Equally, check that

şt
0 gpsqWsds is a Wiener process if gs is a continuous

deterministic function. Hint : Proposition 2.5.2.

2.7.1 Self-similar stochastic Processes with stationary increments

Definition 2.7.8 A stochastic process pXt : t ě 0q is said to have stationary incre-
ments if for any n P N and for any 0 ď t0 ă t1 ă ¨ ¨ ¨ ă tn, the probability distribution of
the stochastic process Xt1`s, . . . , Xtn`s is independent of s ě 0.

Definition 2.7.9 A stochastic process Xt is self-similar, with exponent H P p0, 1s, if
Xat “ aHXt for all t.

A Brownian motion has stationary increments, and is self-similar with self-similarity
exponent H “ 1

2 .



2.7. BROWNIAN MOTION 37

Remark 2.7.10 Note that if Xat “ aHXt and H ą 0 and Xptq is continuous at zero,
then Xp0q “ 0 a.e..

Proposition 2.7.11 Suppose that Xt is real-valued such that X0 “ 0, H-self-similar ,
with stationary increments, and with finite second moment, then

EpXtXsq “
1

2
σ2pt2H ` s2H ´ |t´ s|2Hq,

where σ2 “ EpX1q2.

Proof This follows from a simple computation:

EpXtXsq2 “ ´
1

2
pEpXt ´Xsq2 ´ EpXtq

2 ´ EpXsq2q “
1

2
rt2H ` s2H ´ pt´ sq2HqsEpX2

1 q,

proving the claim. l

A generalisation to independent sequence of random variables are m-dependent
sequence: Xn1 and Xn are independent if |n1 ´ n| ą m. If Xt is a stochastic process, we
define:

ϱpnq “ Xn`1 ´Xn

to be the process of increment 1.

Definition 2.7.12 We say that Xt has long range dependence ( rather, its increment
has long range dependence) if there does not exist a number m such that ϱpn` kq and
ϱpnq are independent for all k ą m and all n.

Proposition 2.7.13 If Xt is a continuous self-similar process, with self-similar expo-
nent H P p0, 1qzt1

2u, has stationary increment and finite second moment, then Xt has
long range dependence. In fact, if Rpnq :“ Epϱnϱ0q then as n Ñ 8,

Rpnq „ Hp2H ´ 1qn2H´2EpX2
1 q.

Proof Since Xp0q “ 0,

Rpnq “ ErX1pXn`1 ´Xnqs “
1

2
rppn` 1q2H ´ n2Hq ´ pn2H ´ pn´ 1q2HqsErpX1q2s,

concluding the proof by Taylor expansion. l

Remark 2.7.14 Observe that if H P p0, 12q, then Rpnq decays sufficiently fast,
ÿ

|Rpnq| “
ÿ

n2H´2 ă 8.

If H ą 1
2 , on the other hand, the decay in correlation is slow, and the series

ř

|Rpnq| is
not summable.
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Definition 2.7.15 Let H P p0, 1s. If a real valued mean zero continuous Gaussian
process, with BH

0 “ 0, has covariance

1

2
pt2H ` s2H ´ |t´ s|2HqErpBH

1 q2s,

it is called a fractional Brownian motion (fBM) with Hurst exponent H. It is a standard
fBM if ErBHp1q2s “ 1.

Proposition 2.7.16 A fractional Brownian motion is self-similar with exponent H and
has stationary increments.

Proof Firstly, XH
t :“ BH

at is a Gaussian process. It is sufficient to identify its covari-
ance:

ErXH
t X

H
s s “

1

2
a2Hpt2H ` s2H ´ |t´ s|2HqErpBH

1 q2s “ ErpaHBH
t qpaHBH

s q,

and thus XH “ BH in law.

Similarly, for any a ě 0, the increment process Xt :“ Bt`a ´ Bt is Gaussian, one
compute:

ErpBH
t`a ´BH

t qpBH
s`a ´BH

s qs “
1

2
pt2H ` s2H ´ |t´ s|2HqErpBH

1 q2s,

hence XH and BH are equal in law. l

2.7.2 Integral representation for fractional Brownian motion

The following theorem will need the basics on a Wiener integral. Wiener integral is of
the form

şt
0 fsdWs where f : r0, T s Ñ R is such that

şT
0 pfsq2ds ă 8 and t ď T and Ws is a

one dimensional Brownian motion. Let S denote the space of simple functions : f P S

is of the form

fptq “

N
ÿ

k“1

ak1Ak
ptq

where Ak P BpRq. We can in fact choose Ak “ pak, bks and define

ż 1

0
fptqdWt “

N
ÿ

k“1

akpBtk ´Btk´1
q.

The integral
ş1
0 fptqdWt is a Wiener process on can show that

Ep

ż t

0
fsdWsq2 “ }f}L2 .
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If f P L2, we take simple functions fn Ñ f in L2, then
şt
0 fnpsqdWs converges in L2 which

we define to be
ş1
0 fsdWs. It̂ısometry and Gaussian property remains to hold. Similarly,

for any t

Ep

ż t

0
fsdWs

ż t

0
gsdWsq “

ż t

0
fsgsds.

Definition 2.7.17 If W 1 and W t are two independent Brownian motions, we define
Wt “ W 1

t for t ą 0 and Wt “ W 2
´t for t ď 0. Then Wt is called a two sided Brownian

motion.

Theorem 2.7.18 Let

Xt “

ż 0

´8

`

pt´ uqH´ 1
2 ´ p´uqH´ 1

2 qdWu `

ż t

0
pt´ uqH´ 1

2

˘2
dWu.

Then Xt is a fractional Brownian motion.

Proof For u ă t, let

fpt, uq “

!

pt´ uqH´ 1
2 ´ p´uqH´ 1

2 , t ě 0

pt´ uqH´ 1
2 , t ă 0.

We first show that for any t ą 0, f P L2pr´8, tqs.

ż t

´8

pfpt, uqq2du “

ż 0

´8

pt´ uqH´ 1
2 ´ p´uqH´ 1

2 q2du`

ż t

0
pt´ uq2H´1 du

“ t2Hp

ż 1

´8

p1 ´ sqH´ 1
2 ´ p´sqH´ 1

2 q2du`

ż 1

0
p1 ´ sq2H´1 dsq

“ t2H
ż 1

´8

pfp1, uqq2du ă 8.

Note that Xt and Yt are Gaussian processes. Observe that the integrals from p´8, 0q

and r0, T q are independent, also p
şh
0 rpt ` h ´ uqH´ 1

2 ´ ph ´ uqH´ 1
2 qdWu and

şt`h
h pt ` h ´

uqH´ 1
2dWu are independent. Thus,

ErXt`h ´Xhq2 “

ż 0

´8

ppt´ uqH´ 1
2 ´ ph´ uqH´ 1

2 q2du` E
“

p

ż t`h

0
pt` h´ uqH´ 1

2dWu ´

ż h

0
ph´ uqH´ 1

2dWuq2
‰

“

ż 0

´8

ppt´ uqH´ 1
2 ´ p´uqH´ 1

2 q2du

` E
ż h

0
ppt` h´ uqH´ 1

2 ´ ph´ uqH´ 1
2 q2du`

ż t`h

h
pt` h´ uq2H´1du

“

ż h

´8

ppt` h´ uqH´ 1
2 ´ ph´ uqH´ 1

2 q2du`

ż t`h

h
pt` h´ uq2H´1du
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“ t2H
ż 1

´8

rfp1, uqs2du.

By polarisation,

ErXptqXpsqs “
1

2
pt2H ` S2H ´ |t´ s|2Hq

ż 1

´8

rfp1, uqs2du.

Since Xptq is a Gaussian process it is a fBM. l

2.8 Sample properties

A stochastic process Yt is said to have a certain property pP q, if for almost surely all
ω, t ÞÑ Ytpωq has the property. For example,

Definition 2.8.1 A stochastic process pXtq is said to be continuous, if for almost
surely all ω, t ÞÑ Xtpωq is continuous. Similarly, a stochastic process is Hölder contin-
uous if t ÞÑ Xtpωq is everywhere Hölder continuous, almost surely.

2.8.1 Hölder spaces

Hölder continuity is a measurement for continuity. Given a function f : R Ñ R, one is
interested whether there exists a function ω such that

|fpxq ´ fpyq| ď ωp|x´ y|q.

A useful way to strengthen the notion of continuity is to require its modulus of conti-
nuity proportional to |x´ y|α and α P p0, 1s.

Definition 2.8.2 Let D be an open subset of Rd. A function f : D Ñ Rn is locally
Hölder continuous of exponent α if for every u0 P D there exists a neigbourhood of D
and a constant c such that for u, v P D,

|fpuq ´ fpvq| ď c|u´ v|α,

here | ´ | denotes the Euclidean norm. In our finite dimensional setting this is equiv-
alent to require that for relatively compact subset D1 of D

sup
u­“v,u,vPD1

|fpuq ´ fpvq|

|u´ v|α
ă 8.

The definition for Hölder continuity extends to functions between metric spaces.
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Definition 2.8.3 Let D be an open subset of Rd. A function f : D Ñ Rn is uniformly
Hölder continuous of exponent α if

sup
u­“v,u,vPD

|fpuq ´ fpvq|

|u´ v|α
ă 8,

The quantity

|f |α :“ sup
u­“v,u,vPD

|fpuq ´ fpvq|

|u´ v|α

is the Hölder semi-norm of f on D.

Definition 2.8.4 A function x : R Ñ Rd is locally Hölder continuous of exponent α if

sup
0ďu­“v,u,vPK

|xu ´ xv|

|u´ v|α
ă 8,

for any compact subset K of R.

We denote by Cα the space of locally Hölder continuous functions. For example,
the space of paths Cα “ Cαpr0, T s,Rdq consists of paths with finite Hölder semi-norm.

Cαpr0, T s,Rnq “ tx : r0, T s Ñ Rn : |x|α ă 8.u

Recall that a function f : D Ñ R, where D Ă Rn is concave if for any x, y P D and
any t P r0, 1s,

fptx` p1 ´ tqyq ě tfpxq ` p1 ´ tqfpyq.

Lemma 2.8.5 If f : R` Ñ R is concave and fp0q “ 0 then fpxq ` fpyq ě fpx ` yq for any
x ą 0, y ą 0. In particular, for x ą y,

fpxq ´ fpyq ď fpx´ yq.

Proof Indeed, x “
y

x`y0 ` x
x`y px` yq, by concavity,

fpxq ě
y

x` y
fp0q `

x

x` y
fpx` yq,

Similarly,
fpyq ě

x

x` y
fp0q `

y

x` y
fpx` yq.

Adding up the two to conclude. l
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Example 2.8.6 Let α P p0, 1q. Consider f : R` Ñ R, fpxq “ |x|α. On any interval
rϵ2,8q, f2 “ αpα ´ 1qxα´2 ă 0, so f is concave on p0,8q, and on R`. Thus, for x ą y,
|x|α ´ |y|α ď |x´ y|α. This shows that |x|α is uniformly Hölder continuous.

Introducing a norm:
}f |C0,α “ |f |8 ` }f}α.

The space C0,αp0, T s;Rnq is the completion of the space of C8 smooth functions, from
r0, T s to Rn, under the C0,α norm.

If Ω is a bounded subset of Rn, there is a continuous compact inclusion map: for
0 ă α ă β ď 1, C0,β Ă C0,α:

}f}α “
|fpuq ´ fpvq|

|u´ v|α
“

´

|fpuq ´ fpvq|

|u´ v|β

¯α{β
|fpuq ´ fpvq|

1´α
β

ď p}f}βq
α
β p2|f |8q

1´α
β .

If the stochastic processes has continuous sample paths, by its distribution we
mean the measure it induces on the Wiener space Cpr0, T s;X q.

2.8.2 Kolmogorov’s continuity theorem

Given a collection of random variables index by r0, T s, apriori we know nothing of its
measurability in time or its continuity. We can often choose a continuous version

Definition 2.8.7 1. Two stochastic processes Xt and Yt on the same probability
space are modifications of each other if for each t, P pXt “ Ytq “ 1. The exceptional
set tω : Xtpωq ­“ Ytpωqu may depend on t. Such processes are said to be versions
of each other.

2. Two stochastic processes Xt and Yt on the same probability space are indistin-
guishable of each other if P pXt “ Yt, @tq “ 1.

By a Kolmogorov’s continuity theorem, also referred as Kolmogorov-Chentsov The-
orem, we mean the following type of result: Given appropriate moment bounds on the
distance dpXt, Xsq, there is a continuous and Hölder continuous modification. Fur-
thermore, there is a bound on the Lp norm of the Hölder norm of the modification. In
R1, Kolmogorov theorem infers continuous modification of a stochastic process from
bounds of the form

E|Xptq ´Xpsq|p ď C|t´ s|1`β.

We use the notation }Xt ´Xs}p ” Ep|Xptq ´Xpsq|pq
1
p .



2.8. SAMPLE PROPERTIES 43

Definition 2.8.8 A stochastic process Xt is continuous in probability (also known as
stochastic continuity) if for any s, and any δ ą 0,

lim
tÑs

Pp|Xt ´Xs| ą δq “ 0.

Markov-Chebechev inequality implies that Pp|Xt ´ Xs| ą δq ď Cδ´pEp|Xt ´ Xs|pq ď

C|t ´ s|1`β, should the moment estimate given above holds. For example, a Poisson
process Nt satisfies that }Nt ´ Ns}p “ Cp|t ´ s|

1
p , it is stochastic continuous, however

does not have a continuous version.

Theorem 2.8.9 (Kolmogorov’s theorem in dimension 1) Let pXt, 0 ď t ď T q be a
stochastic process with values in a Banach space E , such that for a number p ą 1

and some δ ą 1
p and some constant Cp.

}Xt ´Xs}p ď Cp|t´ s|δ.

Then there exists a continuous modification, X̃t, which is furthermore Hölder continu-
ous. For every γ ă δ ´ 1

p , X P Cγpr0, T s;Rq almost surely and

}|X̃|γ}Lp ď Cp

ÿ

nPN0

1

2
npδ´ 1

p
´γq

ă 8.

Example 2.8.10 Consider the probability space pr0, 1s,Bpr0, 1sqq with Lebesgue mea-
sure, and the stochastic process:

Xtpωq “

#

1, t “ ω

0, t ­“ ω

For any ω, Xt is not a continuous function. The conditions of the Kolmogorov Theorem
holds, we can take Xtpωq ” 0.

Example 2.8.11 Let fn : r0, T s ˆ Rd Ñ R and f̄ : Rd Ñ R be measurable functions.
Suppose that we have that for p ą 1, as n Ñ 8,

›

›

›

ż t

s
pfnpr, xq ´ f̄pxqq dr

›

›

›

p
À K n

´ δ
p |t´ s|

1´ δ
p .

Apply Kolmogorv theorem, we see that for every γ ă 1 ´ δ
p ´ 1

p ,

›

›

›
sup

s ­“t,s,tPr0,T s

|
şt
spfnpr, xq ´ f̄pxqq dr|

|t´ s|γ

›

›

›

p
À CK n

´ δ
p ,

i.e. the Hölder norm of the map t ÞÑ
şt
0pfnpr, xq ´ f̄pxqq dr is in Lp.
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There is a version of Kolmogorov’s theorem that applies to a stochastic process
with values in a general metric spaces and indexed by a parameter in subset of a
n-dimensional Euclidean space. We shall keep it simple, taking pXtqtPD where Xt are
real valued and D Ă Rn.

Lemma 2.8.12 Consider the dyadic partition of r0, 1s to 2m points, this divides r0, 1sd

into sub-cubic of side length 1
2m . Let Sm denote the collection of vertices at level m on

these sub-cubes and set S “ YmSm. Let pXtqtPS be a family of random variables indexed
by S with the property that there exists δ ą d

p such that

sup
săt,s,tPS

Ep|Xs ´Xt|
pq

1
p ď C|t´ s|δ.

Let S̃m denote the nearest neighbour pairs in Sm, then for every γ ă δ ´ d
p , for almost

surely all ω, the following holds for some constant C̃:

E
”´

sup
ps,tqPYmS̃m

´

|Xs ´Xt|

|s´ t|γ

¯pı 1
p

ă CC̃.

In particular, supm sup
ps,tqPS̃m

|Xs´Xt|

|s´t|γ is finite almost surely.

Proof Note that Sm contains points whose coordinates taking values in t k
2m , k “

0, 1, . . . , 2mu. The cardinality of Sm is at most C2md where C “ 2d. We care about
the exponential rate md, not the factor C, as m is taken to infinity while d is held
fixed. For this reason, #pSmq is said to be of order 2md. Since S̃m denotes the nearest
neighbour points in Sm, the cardinality of S̃m is also of order 2md. Hence,

E
”´

sup
m

sup
ps,tqPS̃m

´

|Xs ´Xt|

|s´ t|γ

¯pı

ď
ÿ

m

E
”

`

sup
ps,tqPS̃m

p|Xs ´Xt|

2´mγ

˘p
ı

ď
ÿ

m

ÿ

ps,tqPS̃m

E
”

` |Xs ´Xt|

2´mγ

˘p
ı

ď Cp
ÿ

m

ÿ

ps,tqPS̃m

2´mpδp´γpq ď Cp
ÿ

m

2md2mpγp´δpq

This is finite if γ ă δ ´ d
p , concluding the proof. l

For continuity statement, we consider the open cubic p0, 1dq and let Dm “ tp k1
2m , . . . , p

kj
2m q :

0 ď kj ď 2mu X p0, 1qd, it is the set of points whose coordinates are at level m.

Lemma 2.8.13 Let D̃m denote the nearest neighbour pairs inDm. If fptq is a real valued
function defined on YmDm X p0, 1qd such that there exists γ ą 0 and C ą 0 so that

sup
m

sup
s,tPDm:|s´t|“2´m

|fptq ´ fpsq|

|t´ s|γ
“ C ă 8,
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for any nearest neigbours s, t on Dm, then f extends to a continuous function on the
cube r0, 1sd, and the extension is Hölder continuous of order γ, with Hölder constant CC̃
where C̃ is a constant independent of f .

Proof For every point s P r0, 1sd, on the grid Dm there is a closest point, denote it by
πmpsq, in particular

|πmpsq ´ s| ď 2d{22´m.

Note that |πmpsq´πm`1psq| ď 22d{2 2´m, and the sequence tπmpsqu is a Cauchy sequence,
converging to s. Furthermore, there is a chain of neigbouring pairs at level m con-
necting πmpsq to πm´1psq (at most of length 2d). By the nearest neighbour assumption
on the Hölder norm,

|fpπmpsqq ´ fpπm`1psqq| ď 2γp1` d
2

qC 2´γm.

Since |
ř

m fpπmpsqq ´ fpπm`1psqq| is summable, fpπmpsqq has a limit which we define to
be f̃psq:

f̃psq “ lim
mÑ8

fpπmpsqq,

and
|f̃psq ´ fpπmpsqq| ď CC2 2

´mγ .

On a point in YmDm, f̃ agrees with f , for the nearest dyadic point to it is itself. We
have defined an extension of f to the cube, which we denote by f̃ .

We proceed to show that f̃ : p0, 1qd Ñ R is Hölder continuous. Take any s ­“ t from
the cube, close to each other, then there exists m0 with

1

2m0`1
ď |s´ t| ď

1

2m0
.

Then |πm0psq ´ πm0ptq| ď Cpdq2´m0 for a universal constant Cpdq depending only on d.
There is a short chain of nearest points in Dm0 connecting πm0psq and πm0ptq, so

|fpπm0psqq ´ fpπm0ptqq| ď CpdqC2´m0γ .

Put these together,

|f̃psq ´ f̃ptq| ď |f̃psq ´ fpπm0psqq| ` ||f̃psq ´ fpπm0ptqq| ď 2CpdqC2´m0γp2´m0qγ ď CC 1|s´ t|γ ,

where C 1 depends only on d. This proved that the extension is Hölder continuous of
order γ. l

Definition 2.8.14 If a family of random variables are indexed by a set D P Rn, it is
often referred as a random field.
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Definition 2.8.15 Let p ą 1, α ą 0, we define the following function space of adapted
stochastic processes.

Bα,p “

"

X : Xt P Ft, sup
săt

}Xt ´Xs}p

|t´ s|α
ă 8

*

.

Theorem 2.8.16 Let D be a compact set of Rd. If pXtqtPD is a random field in Bα,p, for
some α ą 0, p ą 1, and C ą 0. And its norm is bounded as follows:

sup
s ­“t,s,tPD

}Xs ´Xt}p ď C|t´ s|α,

Then Xt has a continuous extension, denoted as X̃t, which furthermore satisfies that
for any γ ă α ´ d

p ,
›

›

›
sup

s ­“t,s,tPD

|X̃s ´ X̃t|

|s´ t|γ

›

›

›

p
ď CC̃

where C̃ is the constant appearing in Theorem 2.8.12. In particular, the space Bα,p Ă

LppΩ,Cγq (up to modification) for γ ă α ´ d
p .

Proof By Lemma 2.8.12,

E
”´

sup
ps,tqPYmS̃m

|Xs ´Xt|

|s´ t|γ

¯pı 1
p

ă CC̃.

Then there exists a subset of Ω of full measure, for ω from this set, the Hölder norm
of X¨pωq on the dyadic points is finite. Let Apωq be the smallest number such that
sup

ps,tqPYmS̃m

|Xs´Xt|

|s´t|γ ď Apωq. For ω with Apωq ă 8, let X̃tpωq denote its continuous
extension. Note that the process Xt is continuous in probability, so its values are
determined by its values in a dense subset and Xtpωq “ X̃tpωq almost surely. Note
that Lemma 2.8.13, the Hölder norm for each sample path of the extension x is the
same as that for x on nearest neighbours, consequently their Lp norm is finite with
the same bound. l



Chapter 3

Markov Processes

Let the state space of the stochastic processes be denoted by X , which is assumed to
be a complete and separable metric space.

Definition 3.0.1 If Xt is a stochastic process, we denote by FX
t its natural filtration:

FX
t “ σpXs : s ď t, s P Iq,

which is the smallest σ-algebra generated Xs, for s P p´8, ts X I.

Definition 3.0.2 An Ft adapted stochastic process pXtq is said to be an Ft-Markov
process, if for any s ă t and for any A P BpX q, the following holds

PrXt P A |Fss “ PrXt P A |Xss (3.1)

almost surely.

The notation Pr´ |xss denotes taking conditional expectation with respect to the ran-
dom variable Xs. We shall drop Ft and simply call Xt a Markov process. A Markov
process, with respect to any filtration, is also a Markov process with respect to its own
filtration.

3.1 Markov Processes

Proposition 3.1.1 If pXtq is a Markov process, then for any s ď t1 ă ¨ ¨ ¨ ă tn, and n,
and bounded measurable functions fi : X Ñ R, the following identity holds:

E
“

Πn
i“1fipXtiq|Fs

‰

“ E
“

Πn
i“1fipXtiq|Xs

‰

. (3.2)

47
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The set of Borel measurable functions can be replaced by the union of a set of measure
determining functions and the constants.

3.1.1 Transition Function

To address measurability issues, we introduce the notion of (Markov) transition func-
tions and assume that a Markov process has such a transition function. A Markov
transition function is used to specify the probability that a Markov process, starting
from a point x, lands in a set A at time t.

Definition 3.1.2 A time homogeneous transition kernel is a family of probability
measures, P :“ tPtpx, ¨q : x P X , 0 ď tu on X , with the following properties:

(i) for each x P X , Ptpx, ¨q is a probability measure on X ;

(ii) for each A P BpX q, the function x ÞÑ Ptpx,Aq is Borel measurable.

(iii) P0px, ¨q “ δx, where δx is the Dirac measure at x.

(iv) for any r ď s ď t, x P X and B P BpX q,

Ps`tpx,Bq “

ż

X
Ptpy,BqPspx, dyq. (3.3)

This last equation is referred to as the Chapman-Kolmogorov equation. A family
of probability measures satisfying the first two conditions are referred to as a
Markov kernel.

Note that (3.3) is equivalent to:
ż

X
fpyqPt`spx, dyq “

ż

X

ż

X
fpzqPtpy, dzqPspx, dyq. (3.4)

Definition 3.1.3 The transition function pPtq is said to be the transition function for
a (time homogeneous) Markov process pXtq if, for any A P BpX q and s ă t,

PrXt P A|Fss “ Pt´spXs, Aq, a.s. (3.5)

The distribution of X0 is called the initial distribution.

Remark 3.1.4 We shall assume that Ptpx,X q “ 1, which means that Xt does not
explode.
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Proposition 3.1.5 If pXt, t ě 0q is a Markov process with transition probabilities P and
initial distribution µ0, then for any fi P BbpX q, 0 ă t1 ă ¨ ¨ ¨ ă tn,

EpΠn
i“1fipXtiqq “

n`1
hkkkkikkkkj

ż

X
. . .

ż

X
Πn

i“1fipyiqΠ
n
i“1P pyi´1, dyiqµpdy0q. (3.6)

Proof The proof for this is routine. For f P BbpX q, we have

ErfpXtqs “ EpErfpXtq|X0sq “ Ep

ż

fpyqPtpX0, dyqq “

ż

X

ż

X
fpyqPtpy0, dyqµ0pdyq.

Let us assume that this holds for N time points, where N ě 1. Then

E
`

ΠN
i“1fipXtiq

˘ tower
“ E

`

E
`

ΠN
i“1fipXtiq|FN´1

˘˘

“E
´

ΠN´1
i“1 fipXtiqEpfN pXtN q|FN´1q

¯

Markov
“ E

´

ΠN´1
i“1 fipXtiqE

`

fN pXtN q| XtN´1

˘

¯

“E
ˆ

ΠN´1
i“1 fipXtiq

ż

X
fN pyN qP pXtN´1 , dyN q

˙

The last function involves only t0, t1, . . . , tN´1, so we can apply the induction hypothe-
sis:

RHS “

N
hkkkkikkkkj

ż

X
. . .

ż

X

ˆ

ΠN´1
i“1 fipyiq

ż

X
fN pyN qP pyN´1, dyN q

˙

ΠN´1
i“0 P pyi, dyi`1qµpdy0q

“

N`1
hkkkkikkkkj

ż

X
. . .

ż

X
ΠN

i“1fipyiqΠ
N
i“1P pyi´1, dyiqµpdy0q.

The last line follows after bring ΠN´1
i“1 fipyiq inside the inner most integral. l

A similar proof shows that following:

Exercise 3.1.6 Let pXtq be a Markov process with transition function Ptpx,Aq, t1 ď

¨ ¨ ¨ ď tn, and f1, . . . , fn from BbpX q, then

EpΠn
i“1fipXti`s | Fsq “

ż

X
. . .

ż

X
Πn

i“1fipziqPtn´tn´1pzn´1, dznq . . . Pt1pXs, dz1q.

It is sufficient to prove it for fi the indicator functions. We show this for n “ 2,

PpXt1`s P A1, Xt2`s P A2 | Fsq “ E
´

PpXt2`s P A2 | Ft1`sq | 1Xt1`sPA1 | Fs

¯

“ E
´

Pt2´t1pXt1`s, A2q | 1Xt1`sPA1 | Fs

¯

“

ż

A1

Pt2´t1pz,A2qPt1pXs, dzq.
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For n ě 2, the analogous conclusion follows from induction.

3.2 Semi-groups and Generators

The set of all linear operators between two normed vector spaces pE, | ¨ |Eq and pF, | ¨ |F q

shall be denoted by LpE,F q, on which we define the operator norm:

}T } :“ sup
|x|E“1

|Tx|F .

A linear operator T is said to be bounded if its operator norm is bounded.

Example 3.2.1 Suppose that a pE, | ¨ |q is a finite dimensional normed vector space.
Denote by n its dimension. Then every linear map from E Ñ F is bounded. Indeed,
let teiu

n
i“1 be an o.n.b. basis of E, then if x “

ř

xiei,

|Tx| ď max |xi|
n
ÿ

i“1

|Tei|.

Since maxi |xi| defines a norm on E and all norms on E are equivalent, then there
exists a constant C such that max |xi| ď C|x| for all x P E, and }T } ď C

řn
i“1 |Tei|.

Proposition 3.2.2 Let T P LpE,F q. The following statements are equivalent:

1. T is bounded,

2. T is continuous,

3. T is continuous at 0.

Example 3.2.3 Let T : C1pr0, 2πsq Ñ Cpr0, 2πsq be the derivative operator Tf “ f 1. Then
T is not bounded. Take fnptq “ sinpntq and use |Tf |8 “ |f 1|8.

Let us consider an index set Λ, usually taken to be an interval r0, T s,R`, or the set
of natural numbers N and N0 “ N Y t0u.

Definition 3.2.4 A one parameter family of bounded linear operators T ptq : E Ñ E on
a Banach space E, t P Λ, is said to be a semigroup if

T pt` sq “ T ptqT psq, T p0q “ I, (3.7)

where I denotes the identity amp,
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Example 3.2.5 The following defines a semi-group of bounded linear operators on
sespective spaces:

• A P Mnˆn, the set of nˆ n matrices. Define Tt : RÑRn by Tt “
ř8

n“0
ptAqn

n! .

• Translation on the circle S1 “ eis: define Ttpeisq “ eipt`sq.

• Translation Semi-group. Define Tt : BCpR;Rq Ñ BCpR;Rq by Ttfpxq “ fpx` tq.

• Conditioned Shift. Let E0 denote the space of adapted L1 Ft-bounded processes.
Set }X} “ supt E|Xt|. Let E be the equivalent class of functions: X “ Y if }X ´

Y } “ 0. Define Tt : E Ñ E by Ttfpsq “ Erfpt` sq|Fss.

Example 3.2.6 A time homogeneous Markov process induces a semi-group of linear
operators on BbpX q by the formula:

Ttfpxq “

ż

X
fpyqPtpx, dyq.

Firstly, T0fpxq “
ş

fpyqδxpdyq “ fpxq. Then,

TtpTsfqpxq “

ż

X
TsfpyqPtpx, dyq “

ż

X

ż

X
fpyqPspy, dzqPtpx, dyq “ Tt`sfpxq,

in the last step we have used (3.4), the Chapmann-Kolmogorov equation.

Definition 3.2.7 A linear operator T on E is said to have

1. the positive preserving property if Tf ě 0 whenever f ě 0;

2. the conservative property if T1 “ 1

3. the contractive property if }T } ď 1.

A semi-group of linear operators Tt on E is said to have these properties if for each t,
Tt does.

A semi-group of linear operators on BbpX q with positive preserving and conservative
property, on a locally conpact space, introduces a family of probability measures
satisfying the Chapman-Komogorov equation and P0px, ¨q “ δx. In addition, x ÞÑ Ptp¨,Γq

is measurable. We do not yet have the joint measurability in pt, xq required for defining
a transition function, it can be easily obtained from a suitable continuity in time
assumption.

If a Markov process is stochastic continuous, then for each f bounded continuous,
Ttfpxq “ EpfpXtq | X0 “ xq Ñ fpxq. Since the time in the semigroup is taken from an
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uncountable space, we would impose some regularity on t. A natural concept of
for a semigroup Tt on a Banach space E seems to be the norm continuity: }Tt ´

I} Ñ 0, however it is rare that a semi-group of interest is uniformly continuous. The
continuity of the image Ttf where f P E is more suitable.

Definition 3.2.8 A semigroup of bounded linear operators on a Banach space E is
uniformly continuous if

}Tt ´ I} “ sup
|x|“1

|Ttx´ x| Ñ 0,

as t Œ 0. It is called strongly continuous if

lim
tŒ0

|Ttx´ x| “ 0

for each x P E.

If A is a nˆ n matrix, | expptAqx´ x| “ t|A
ř8

n“1
ptAqn

n! x| Ñ 0 uniformly in x.

Example 3.2.9 An example of a non-strongly continuous semigroup on BCpR;Rq is:
T0 “ I and Tt “ 0 for t ą 0.

3.2.1 Generators

Definition 3.2.10 Let Tt be a strongly continuous semigroup of bounded linear op-
erators on a Banach space E. We define its generator by: for f P E,

Lf :“ lim
tŒ0

Ttf ´ f

t
(3.8)

if the limit exists. The domain of L is then defined by

DpLq :“ tf P BbpX q : the limit (3.8) existsu.

Exercise 3.2.11 Show that the translation semi-group is not strongly continuous on
BCpR;Rq either. Identify its generator and a space on which it is strongly continuous.

3.3 Feller and Strong Feller

Recall that the dual space E˚ to a Banach space E is the set of continuous linear
functions from E to R. Then E˚ is also a Banach space with the operator norm }ℓ} “

supf ­“0
|ℓpfq|

}f}
. We remark that a positive linear functional ℓ : CpX q Ñ R is automatically
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bounded and ℓpfq ď ℓp}f}q “ }f}ℓp1q. The Riesz representation theorem states that
if CpX q is a compact metric the dual space CpX q˚ is the space of finite signed Borel
measures on X , with the total variation norm. ( It is customary to define the bilinear
map: xℓ, fy “ ℓpfq.) The tale of caution to a positive answer to the question is that
the dual of BbpX q are not necessarily a subset of measures. To obtain some sort of
measurability on the transition probabilities, it would be helpful if the semigroup has
continuity property. The continuity in time of Ttf is automatic if f is continuous and
Tt comes from a Markov process that is continuous in probability. For continuous f ,
the spatial continuity of Ttf comes from the Feller property, otherwise from the strong
Feller property.

Definition 3.3.1 A semigroup Tt on BbpX ) is said

1. to be Feller if it restricts to a semigroup on CpX q.

2. to be strong Feller if Ttf is continuous for any f P BbpX q and any t ą 0.

Remark 3.3.2 If Tt is associated with a transition function, then the Feller property
is equivalent to that x ÞÑ Ptpx, ¨q is continuous from X to PpX q in the weak topology,
which precisely means for any f bounded and continuous, whenever xn Ñ x,

lim
nÑ8

ż

fpyqP pxn, dyq “

ż

fpyqP px, dyq.

Example 3.3.3 Let x0 P X , set P px, dyq “ δx´x0. Then Tfpxq “
ş

X fpyqP px, dyq “ fpx´x0q

is Feller.

Example 3.3.4 (Not Feller) Let P px,Aq be a family of transition probabilities on R
given below

P px, ¨q “

#

δ1, if x ą 0

δ0, if x ď 0.

Then

Tfpxq “

ż

R
fpyqP px, dyq “

#

fp1q if x ą 0

fp0q, if x ď 0,

and Tf fails to be continuous at 0 for continuous functions f with fp1q ­“ fp0q.

3.4 Stopping times

A stopping time is, roughly speaking, the time that an event has arrived. This time is
8 if the event does not arrive. For a nice account of stopping times see Kallenberg [?],
here we only state the basic properties of stoppoing times. Let I Ă R`.
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Definition 3.4.1 A function T : Ω Ñ I Y t8u is a pFtq stopping time if for every t P I,
the event tT ď tu belongs to Ft.

Note that A constant time is a stopping time, and so is T pωq ” 8.

Let pXtq be a stochastic process on S. For B P BpSq let

TBpωq “ inftt ą 0 : Xtpωq P Bu,

TB is referred as the hitting time of B by pXtq. By convention, infpϕq “ `8.

For discrete index I “ N, f function T : Ω Ñ N is a tFnu stopping time if and only
if tT pωq “ nu P Fn for all n. Indeed, if T is a stopping time, tT “ nu “ tT ď nu X tT ď

n´ 1uc P Fn. Conversely, tT ď nu “ Yi“1tT “ iu P Fn if tT pωq “ nu P Fn for all n.

Example 3.4.2 Suppose that pXnqnPN is pFnq adapted. Let B be a measurable set.
Then TB is an Fn stopping time:

tTB ď nu “ Ykďntω : Xkpωq P Bu P Fn.

If pXtq is an right continuous pFtq-adapted stochastic process, the hitting time of
an open set is an F`

t -stopping time. Recall one of the usual assumptions: Ft “ F`
t .

The first hitting time of closed set by a continuous pFtq-adapted stochastic process is
an Ft- stopping time.

Proposition 3.4.3 Let S, T, Tn be stopping times.

(1) Then S _ T “ maxpS, T q, S ^ T “ minpS, T q are stopping times.

(2) lim supnÑ8 Tn and lim infnÑ8 Tn are stopping times.

Proof Part (1) follows from the following observations:

tω : maxpS, T q ď tu “ tS ď tu X tT ď tu, tω : minpS, T q ď tu “ tS ď tu Y tT ď tu.

Since
lim sup

nÑ8

Tn “ inf
ně1

sup
kěn

Tn, lim inf
nÑ8

Tn “ sup
ně1

inf
kěn

Tn

we only proof that if Tn is an increasing sequence, supn Tn is a stopping time; and if
Sn is a decreasing sequence of stopping times with limit S, infn Sn is a stopping time.
These follows from tsupn Tn ď tu “ XntTn ď tu, tinfS ď tu “ YntSn ď tu. l

Given a process pXtq and a stopping time S, we define the stopped process XS by :
pXSqt “ XS^t. For simplicity we remove the bracket and denote XS

t :“ pXSqt.
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Definition 3.4.4 Let T be a stopping time. Define

FT “ tA P F8 : AX tT ď tu P Ft,@t ě 0u.

If T “ t is a constant time, FT agrees with Ft. For T takes values in N,

FT “ tA P F8 : AX tT “ nu P Fn,@n P Nu.

Definition 3.4.5 A stochastic process X : I ˆ Ω Ñ E is progressively measurable if

(1) X : I ˆ Ω Ñ E is measurable

(2) for each t ą 0, X : r0, ts ˆ Ω Ñ E is a measurable map with respect to the product
σ-algebra Bpr0, tsq b Ft.

Theorem 3.4.6 If T is a stopping time and pXt, t P Iq a stochastic process. Then XT is
FT -measurable if I “ ra, bs and pXtq is progressively measurable.

Proof By the definition XT is measurable w.r.t. FT if and only if for any B P BpRq and
t ě 0. tXT P Bu X tT ď tu P Ft. Observe that

tXT P Bu X tT ď tu “ tXT^t P Bu X tT ď tu.

It is sufficient to show that for any stopping time τ ď t, Xτ is Ft -measurable. We
define a random variable with values in r0, ts:

ψ : pΩ,Ftq Ñ

´

Ω ˆ r0, ts,Ft b Bpr0, ts
¯

ψpωq “ pω, τpωqqq

Then ψ is measurable. In fact, if A P Ft, s1 ă s2 ď t,

tω : ψpωq P Aˆ ps1, s2qu “ AX tω : τpωq P ps1, s2qu P Ft.

Let
Y :

´

Ω ˆ r0, ts,Ft b Bpr0, ts
¯

Ñ pR,BpRqq

be given by
Y pω, tq “ Xtpωq.

Since pXtq is progressively measurable, Y is measurable. This concludes that Xτ “

Y ˝ ψ is Ft-measurable. l

Theorem 3.4.7 If T is finite stopping time, then FT “ σtXT : X is càdłàgu.
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For a proof see Revuz-Yor [16] and Protter [?].

Proposition 3.4.8 Let S, T be stopping times.

(1) If S ď T then FS Ă FT .

(2) Let S ď T and A P FS. Then S1A ` T1Ac is a stopping time.

(3) S is FS measurable.

(4) FS X tS ď T u Ă FS^T .

Proof (1) If A P FS,

AX tT ď tu “ pAX tS ď tuq X tT ď tu P Ft

and hence A P FT . (2) Since FS Ă FT ,

tS1A ` T1Ac ď tu “ ptS ď tu XAq Y ptT ď tu XAcq P Ft.

(3) Let r, t P R, tS ď ru X tS ď tu “ tS ď minpr, tqu P Ft. Hence tS ď ru P Fr. (4) Take
A P FS and t ě 0. Then

AX tS ď T u X tS ^ T ď tu “ pAX tT ď tuq X tS ď tu X tS ^ t ď T ^ tu P Ft.

which follows as S ^ t and T ^ t are Ft-measurable, and AX tS ď T u P FS^T . l

Every stopping time can be approximated by stopping times taking only a count-
able number of values.

Lemma 3.4.9 Let S be a stopping time. Define:

Sn “
1

2n
r2nS ` 1s.

Then each Sn is a stopping time, Sn decreases with n, and |Sn ´ S| ď 1
2n .

Indeed,

Snpωq “
j ` 1

2n
, if Spωq P

„

j

2n
,
j ` 1

2n

˙

, j “ 0, 1, 2 . . . .

If t P r
j
2n ,

j`1
2n q, since Snpωq takes an integer value,

tSnpωq ď tu “ tSnpωq ď
j

2n
u “ tSpωq ă

j

2n
u P F j

2n
Ă Ft.

So Sn are stopping times.
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3.4.1 The Canonical Picture

Let X I “ tω : I Ñ X u denote the collection of mappings from I to X with the product
Borel σ-algebra

Â

tPI BpX q “ σpπt, t P Iq. A stochastic process pXt, t P Iq is a random
variable with values in X I and induces a measure µX “ LpX¨q on X I . This measure
encodes all statistical information of the process.

Let us change the point of view, take Ω :“ X I “ tω : I Ñ X u to be our measurable
space , this is the canonical space. We endowed with the measure induced by the
stochastic process for X¨.

Let πt : X I Ñ X ,
πtpωq “ ωptq

be the canonical evaluation map at time t P I and let Ft be its natural σ-algebra.

Remark 3.4.10 If tXnu is a family of separable metric spaces, the Borel σ-algebra of
Π8

n“1Xn agrees with the product σ-algebras b8
n“1BpXnq. Note that BpX qbI Ă BpX Iq, the

latter is the Borel σ-field on X I equipped with the product topology, and the inclusion
is strict. Indeed, it is clear that singletons are closed in the product topology but a set
A P BpX qbI can only depend on countably many times.

Recall that if pXtqtě0 is a Markov process with transition function P and initial
distribution X0 „ µ, then for any A P BpX q, PpXt P Aq “ ErPtpX0, Aqs “

ş

X Ptpy,Aqµpdyq.
and by ??, for any A0, . . . , An P BpX q and 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn,

PpXt0 P A0, . . . , Xtn P Anq “

ż

A0

¨ ¨ ¨

ż

An

Ptn´tn´1pyn´1, dynq ¨ ¨ ¨Pt1py0, dy1qµpdy0q. (3.9)

This inspires the following definition. Given Pt, µ, and ∆ “ tt1 ă ¨ ¨ ¨ ă tnu Ă I a
finite collection of times, we define a measure µ∆ on X n`1 by

µ∆pA0 ˆ ¨ ¨ ¨ ˆAnq :“

ż

A0

¨ ¨ ¨

ż

An

Ptn´tn´1pyn´1, dynq ¨ ¨ ¨Pt1py0, dy1qµpdy0q. (3.10)

This collection of finite-dimensional distributions is consistent in the sense that, if
Ak “ X ,

µ∆pA0 ˆ ¨ ¨ ¨ ˆAnq “ µ∆zttkupA0 ˆ ¨ ¨ ¨Ak´1 ˆAk`1 ˆ ¨ ¨ ¨ ˆAnq.

We leave it to the reader to check the consistency. Kolmogorov’s extension theorem
then establishes the following result:

Theorem 3.4.11 (Canonical picture) Let P be a transition function and µ P PpX q.
Then there exists a unique measure Pµ on X I such that, for any finite set of times
∆ Ă I, ∆ “ tt1, . . . , tnu,

π˚
∆Pµ “ µ∆,
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where π∆pωq “
`

ωptq
˘

tP∆
“ pωpt1q, . . . , ωptnqq. Consequently, the coordinate map πt is a

Markov process on
`

XR` ,
Â

tPI BpX q,Pµ

˘

with transition function P and initial distribu-
tion µ.

Equation (3.10) precisely means that the finite dimensional distributions of πt are
π˚
∆Pµ, it is therefore a Markov process.

Definition 3.4.12 If µ “ δx in theorem 3.4.11, we denote Px “ Pδx.

Recall that in the definition of a transition function we required that pt, xq ÞÑ Ptpx,Aq

is measurable for each A P BpX q. Hence,

x ÞÑ Pxpπt1 P A1, . . . , πtn P Anq “

ż

A1

¨ ¨ ¨

ż

An

Ptn´tn´1pyn´1, dynq ¨ ¨ ¨Pt1px, dy1q

is measurable and, by an easy monotone class argument, the same holds for x ÞÑ

PxpAq for a general A P
Â

tPI BpX q. We can hence integrate PxpAq and in particular
π˚
∆Pµ “

ş

π˚
∆Pxµpdxq, we have

PµpAq “

ż

X
PxpAqµpdxq.

Remark 3.4.13 The collection of probability measures Px are Markovian measures
(on the path space). If the Markov process is furthermore strong Markov with sample
continuous sample paths, they are called diffusion measures.

Let us now examine how the Markov property looks in the canonical picture, taking
I “ R`. To this end, let θs : XR` Ñ XR`, θsωptq “ ωps ` tq be the shift operator. If
Φ : XR` Ñ R is a Borel measurable function, we introduce the notation:

EµrΦs “

ż

XR`

Φpσq dPµpσq, ExrΦs “

ż

XR`

Φpσq dPxpσq,

Using the canonical process X, on the probability space pXR` ,BbpXR`q,Pxq, we have
another notation: ExrΦs “ ExrΦpXqs.

Theorem 3.4.14 Let pXtqtě0 denote the canonical Markov process with transition func-
tion P . Then, for any Φ P BbpXR`q,

Ex

“

ΦpθsXq |Fs

‰

“ EXsrΦpXqs Px ´ a.s. (3.11)

for each x P X .
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Remark 3.4.15 This can be written as

Ex

“

Φ ˝ θs |Fs

‰

“ EXsrΦs Px ´ a.s.

We stress that the expectations in (3.11) have to be understood as integrals on the
path space. To be utterly precise, (3.11) requires that

ż

A
Φ ˝ θ¨`spωqPxpdωq “

ż

A

ż

XR`

Φpω1qPXspωqpdω
1qPxpdωq

for all A P Fs “ σpπr, r ď sq.

Since Πn
i“1P pyi´1, dyiqµpdy0q is a consistent family of finite dimensional distribu-

tions, by Kolmogorov’s extension theorem, one obtains the following:

Proposition 3.4.16 If Ptpx, ¨q is a time homogeneous Markov transition function, then
for any initial distribution µ0, there exists is Markov process on X with initial distribution
µ0 and such that Pt is its Markov transition function.

Proof It is enough to prove this for

Φpωq “ 1tω:ωpt1qPA1,...,ωptnqPAnu.

Then (3.11) becomes

PxpXt1`s P A1, . . . , Xtn`s P An |Fsq “ PXspXt1 P A1, . . . , Xtn P Anq.

By Theorem 3.1.6

PxpXt1`s P A1, . . . , Xtn`s P An |Ft1`sq

“

ż

X
¨ ¨ ¨

ż

An

Ptn´tn´1pyn´1, dynq ¨ ¨ ¨Pt1py0, dy1qµpdy0q

“

ż

A1

¨ ¨ ¨

ż

An

Ptn´tn´1pyn´1, dynq ¨ ¨ ¨Pt1pXs, dy1q,

where the second line follows from (3.9) with µ “ δXs, proving the required identity. l

We state the following theorem without proof, which can be proved similarly to the
proof that a super-martingale has a cádlág version. The interested reader may refer
to [17], [10], [18, Section III.7]. Recall that Ft` “ XsątFs. However note that we must
add the condition that X is locally compact.

Theorem 3.4.17 If pXtq is a Markov process with transition semigroup pTtq, which is
strongly continuous on C0pX q where X is a locally compact space, then there exists a
càdlàg modification of pXtq, which is an pF`

t q-Markov process with the same transition
semigroup.
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Remark 3.4.18 If pYtqtě0 has càdlàg or continuous sample paths, we can use similar
arguments as above to construct a measure on DpR`,X q and CpR`,X q, respectively.
Since these spaces are however not in BpX qbR`, this is not a simple corollary of our
results and one has to work with the trace σ-fields instead.

3.5 Strong Markov Property

Given a stochastic [process X¨, we define

pθTX¨qn “ XT`n

This means for ω P Ω and t ě 0, pθTX¨qt is a random variable given by pθTX¨qtpωq “

XT pωq`tpωq. The shift Markov process starts from xT . Observe that xT`s is measurable
with respect to FT`s.

Definition 3.5.1 A time-homogeneous Markov process pXtq with transition probabil-
ities P is said to have the strong Markov property if for every finite stopping time T

and for every bounded measurable function Φ : XN Ñ R, the following holds:

E
`

ΦpθTX¨q |FT

˘

“ E
`

ΦpθTX¨q |XT

˘

a.s. (3.12)

For some purposes the natural filtration of a Markov process may be too small,
e.g., the hitting times of open sets by Brownian motion are no stopping times with
respect to the natural filtration. For a given filtration pFtq, we let F`

t :“
Ş

rątFr denote
its right-continuous version.

Proposition 3.5.2 Let pXtq be a Markov process with right-continuous sample paths.
If its transition semigroup pTtq leaves BCpX q or C0pX q-invariant, then pXtq is an pF`

t q-
Markov process.

Proof Let 0 ď s ă t and ε ą 0. For f P BCbpX q, we have that

E
“

fpXt`s`εq |F`
s

‰

“ E
“

ErfpXt`s`εq |Fs`εs |F`
s

‰

“ E
“

TtfpXs`εq |F`
s

‰

.

By right-continuity and bounded convergence, we can take ε Ñ 0 to conclude

E
“

fpXt`sq |F`
s

‰

“ E
“

TtfpXsq |F`
s

‰

“ TtfpXsq.

for bounded continuous test functions f : X Ñ R. To see that this in fact holds for
any bounded measurable f , we fix A P F`

s and define the measures

µApBq “ E
“

E
“

1BpXt`sq |F`
s

‰

1A
‰

, νApBq “ ErTt1BpXsq1As.
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Both measures have the same total finite mass, and
ż

X
f dµ “

ż

X
f dν @f P C0pX q.

Since C0pX q is measure-determining class, µ “ ν, as required. l

Let τ be a stopping time and recall that the stopped σ-field is defined by

Fτ :“
␣

A P F : AX tτ ď tu P Ft @t ě 0
(

.

The following two lemmas are standard:

Lemma 3.5.3 Let

τn :“
8
ÿ

k“0

k ` 1

2n
1␣ k

2n
ďτă k`1

2n

( ` 81tτ“8u, n P N.

Then τn is a stopping time for each n P N and τn Ó τ a.s.

With this one can show that

Lemma 3.5.4 If pXtq is adapted and right-continuous, then Xτ1τă8 P Fτ .

The next theorem shows that Feller processes are strong Markov:

Theorem 3.5.5 Let pXtq be a right-continuous Markov process whose transition func-
tion leaves either C0pX q or BCpX q invariant. Then it has the strong Markov property. If
pXtq is cádlág, the Markov property in the canonical picture is as follows: if Φ is a real
valued bounded measurable function on D

`

r0, 1s,X
˘

,

E
“

Φ ˝ θτ1tτă8u |Fτ

‰

“ 1tτă8uEXτ rΦs. (3.13)

Proof This holds if the Markov process is indexed by only a countable number of
times. Let us first suppose that τ takes only a countable number of values ttk : k P Nu

with 0 ď t1 ă t2 ă ¨ ¨ ¨ ă ¨ ¨ ¨ ď 8. Then, using Theorem 3.4.14, we get for each B P Fτ ,

E
“

Φ ˝ θτ1tτă8u1B
‰

“

8
ÿ

k“1

E
“

pΦ ˝ θtkq1tτ“tku1B
‰

“

n
ÿ

k“1

E
“

ErΦ ˝ θtk |Ftks1tτ“tku1B
‰

“

n
ÿ

k“1

E
”

EXtk
rΦs1tτ“tku1B

ı

“ E
“

EXτ rΦs1tτă8u1B
‰

.
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Here we used the fact that B X tτ “ tu P Ft for each B P Fτ and t ě 0.

If f P Bb and ΦpXq “ fpXtq, this is:

E
“

fpXt`τ q1tτă8u|Fτ

‰

“ TtfpXτ q1tτă8u. (3.14)

Now assume a general τ , for the approximating sequence of theorem 3.5.3,

E
“

fpXt`τnq1tτnă8u|Fτ

‰

“ TtfpXτnq1tτnă8u.

By the right-continuity of X and the Feller property of Tt, for any f P BC (or f P C0pX q),
(4.17) holds by bounded convergence, for any f continuous and bounded. By the
standard method, this holds for bounded measurable f . It then remains to prove this
for functions of the form Πn

i“1fkpxtkq and thus for all bounded measurable functions.
l

The strong Markov property states that the process restarts at any stopping time
afresh.

Example 3.5.6 Let us return to Example ??, consider the transition function

Qtpx, dyq “

#

Ptpx, dyq, if x ‰ 0,

δ0pdyq, if x “ 0,

where Ptpx, dyq “ ptpx, yq where ptpx, yq is the heat/Gaussian kernel. If x ­“ 0, we have
a Brownian motion, e.g. P pXt P Aq “

ş

A ptpx, dyq for any t ą 0. But when it hits zero
(it does in finite time), it gets stuck at 0: from this stopping time, this is no longer a
Brownian motion. However, the Markov property would require that xt`τ to behave as
a Brownian motion starting from 0. More precisely, let τ “ inftą0txt “ 0u, then xτ`t “ 0

for all t.

Let us take a look from the definition of the strong Markov property. A realisation
of the Markov process from x is:

Xt :“

#

x`Wt, if X0 “ x ‰ 0,

0, if X0 “ 0,

for a one-dimensional Brownian motion pWtqtě0. Take Φpσq “ pσp1qq2. Suppose that
Xp0q “ 0, then EXτ pXp1qq2 “ 0, as Xptq “ 0 for all time t when Xp0q “ 0. On the other
hand,

EppX1`τ q2|Fτ q “ Eppx`W1`τ q2|Fτ q ­“ 0.

This Markov process is not Feller!! Let f be a continuous and bounded function,
then

Ptfp0q “ fp0q, Ptfpxq “

ż

R
fpyqptpx, yq dy.
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For t ą 0, limxÑ0 Ptfpxq ­“ fp0q in general. Take for example fpyq “ y2.

3.6 Remarks

3.6.1 Treating Markov Processes with finite life time

A prominent class of Markov processes are solutions of stochastic differential equa-
tions of Markovian type. They may explode and have finite life time. Our setup
excludes a Markov process with finite lifetime, to get around the problem we either
ditch the requirement that Ptpx,X q “ 1 ( it is customary to emphasize the condition
Ptpx,X q “ 1 by referring to P as conservative Markov transition functions.) or enlarge
the state space by adjoint an extra absorbing state ∆ and define dpx,∆q “ 1 for any
x P X . Then X̂ “ X Yt∆u is again a complete separable metric space. More precisely, if
a stochastic process does explode (has a finite lifetime), we define Xt “ ∆ for t greater
or equal to its life time

τ :“ inftt ě 0 : Xt “ ∆u.

The Borel σ algebra on X̂ is that generated by t∆u and BpX q. If Pt is a family of
transition measures with Ptpx,X q ď 1, we may define P̂t on X̂ such that P̂tpx,Aq “

Ptpx,Aq for x P X and A P BpX q, P̂tpx, t∆uq “ 1 ´ Ptpx,X q for x ­“ ∆ and P̂tp∆, t∆uqq “ 1.
The canonical space contains paths ω : r0, τpωq Ñ X where τpωq is a positive number
such that ωptq “ ∆ for any t ě τpωq.

Example 3.6.1 Let pBtq be a real valued Brownian motion. The stochastic process
Xtpωq :“ 1

2´Btpωq
is defined up to the first time Btpωq reaches 2 which we denote by τ :

τpωq “ inf
tě0

tBtpωq ě 2u.

For any given time t, no matter how small it is, there is a set of path of positive
probability (measured with respect to the Wiener measure on Cpr0, ts;Rdq) which will
have reached 2 by time t:

P pτ ď tq “ P psup
sďt

Bs ě 2q “ 2P pBt ě 2q “

c

2

π

ż 8

2?
t

e´
y2

2 dy ą 0.

This probability converges to 1 as t Ñ 0. We say that pXtq is defined up to τ and τ is
called its life time or explosion time.
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3.6.2 Non-time-homogeneous Markov processes

We could also define a non-time-homogeneous transition function tPs,tpx, dyq, 0 ď s ď

t, x P X u, analogous to Definition ??. Then Xt is a Markov process with the transition
function Ps,tpx, dyq if P pXt P A |Fsq “ Ps,tpXs, Aq. The following self-evident claim shows
that we can resort to this case in the sequel.

Exercise 3.6.2 Let X be a Markov process on X with transition function Ps,t. We
define a family of probabilities on R` ˆ X as below. Letting z “ ps, xq P R` ˆ X and
dz̄ :“ dps̄, x̄q,

P̂hpz, dz̄q “ δh`sps̄qPs,s`hpx, dx̄q.

Show that P̂h is indeed a time-homogeneous transition function and X̂t : pYt, Xtq,
where Yt “ Y0 ` t, is a time-homogeneous Markov process with transition function P̂h.

We will focus on time homogeneous Markov processes and drop the prefix ‘time-
homogeneous’ henceforth.

3.7 Invariant probability measure

We may define a transition map on PpX q, the space of probability measures :

P ˚
t µpAq “

ż

X
Ptpx,Aqµpdxq.

Definition 3.7.1 A probability measure µ on X is said to be invariant for Pt if P ˚
t µ “ µ

for all t. If pXtq is a Markov process with transition probabilities Pt, then µ is also
referred as an invariant probability measure for pXtq.

Definition 3.7.2 Given a transition function pPtq and t0 ą 0, we define a Markov chain
with

Ppxn`1 P A|Fnq “ Pt0pxn, Aq, @A P BpX q.

It is a Markov chain with transition probabilities P̃n constructed as follows/

1. P̃ 0px, ¨q “ δx,

2. P̃ 1px, ¨q “ Pt0px, ¨q,

3. For any n ě 1 and x P X , P̃n`1px,Aq “
ş

X Pt0py,Aq P̃npx, dyq for all A P BpX q.
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Note that for all purpose, we can assume that t0 “ 1. A probability measure is an
invariant measure for a discrete Markov chain with transition function pPnq if and
only if P ˚µ “ µ.

For the familiar example of a Markov chain pXnq with discrete state space, for ex-
ample X “ N , the one step Markov transition probabilities are the transition matrices
for which an invariant probability measure is a vector such that µP “ µ where the
left hand side indicating matrix multiplication. On a finite state space, any Markov
chain has an invariant probability measure; it has a unique invariant measure if it is
irreducible and aperiodic.

From an invariant probability for an induced Markov chain with transition proba-
bility Pt0, we can construct an invariant probability for Pt, the measures need not be
the same. The following observation allow us to pass results on discrete time Markov
processes to continuous time Markov processes.

Proposition 3.7.3 Suppose that for some time t0, there exists a probability measure µ
with P ˚

t0µ “ µ. Then there exists an invariant measure for pPtq. If there exists at most
one invariant measure for Pt0 , then uniqueness holds for Pt.

Proof Suppose that for some time t0, T ˚
t0µ “ µ for some t0, then µ̃ “ 1

t0

şt0
0 T

˚
s µds is

an invariant probability measure. It is sufficient to observe that for any A P BpX q,
s ÞÑ T ˚

s µpAq is t0-periodic, its average is invariant under any shift.

Since every invariant probability measure for Tt is invariant for T “ Tt0, uniqueness
of invariant measure holds fro Pt whenever it holds for any fixed time. l

Theorem 3.7.4 (Krylov-Bogoliubov) Let X be a complete separable metric space. Sup-
pose that Tt is Feller and suppose that there exists a µ P PpX q such that the family of
measures tT ˚

t µ : t ě 0u is tight and that t ÞÑ
ş

X Tt1Adµ is measurable for every measur-
able set A. Then there exists an invariant probability measure for Tt.

Proof That t ÞÑ
ş

X Tt1Adµ is measurable is equivalent to t ÞÑ T ˚
t µpAq is meaurable. Set

µnpAq “
1

n

ż n

0
T ˚
s µpAqds.

This tµnu is tight, we show that its accumulation points are invariant probability
measures. To this end we may assume that µn Ñ π To check T ˚

t π “ π for any t ą 0, we
only need to show that

ş

X φdpT ˚
t πq “

ş

X φdπ for any φ P CbpX q. Since T is Feller, Tφ is
a continuous function, since it is also bounded, the dominated convergence theorem
can be used:

ż

X
φ dpT ˚

t πq “

ż

X
Ttφ dπ “ lim

kÑ8

ż

X
Ttφ dµnk
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“ lim
kÑ8

1

nk

ż nk

0

ż

X
TtφdT

˚
s pµq “ lim

kÑ8

1

nk

ż nk

0

ż

X
φdT ˚

s`tpµqds

“ lim
kÑ8

1

nk

ż nk`t

t

ż

X
φdT ˚

s pµqds “

ż

φdπ,

Since φ was also arbitrary, this in turn implies that T ˚π “ π, concluding the proof. l

On a compact space, every family of probability measures is tight, hence the fol-
lowing Corollary.

Corollary 3.7.5 If the space X is compact, then every strongly continuous Feller semi-
group on X has an invariant probability measure.

Given the link between invariant measures fro P1 and for Pt, it is appropriate to
present examples of Markov chains indexed by N and their invariant measures.

Example 3.7.6 Let Φ : X ˆ Y Ñ X be continuous and bounded. Define the Markov
chain by xn`1 “ Φpxn, ξn`1q, with µ „ ξk iid random variables and tx0, ξk, k ě 1u inde-
pendent. Then if f P CbpX q,

Tfpxq “ ErfpΦpx, ξn`1qqs “

ż

f ˝ Φpx, yqµpdyq,

then Tf is continuous. Hence pxnq is Feller and has an invariant probability measure.
An example is xn`1 “ sinpxn ` ξn`1q.

Example 3.7.7 Consider pxnq a Markov chain on Rn with initial position x0. Assume
P (equivalently T ) is Feller, then there exists an invariant probability measure if any
of the following holds:

1) supně0 Er|xn|ps ă 8 for some p ą 0.

2) supně0 E| logp|xn| ` 1q| ă 8.

Proof In these settings we have Pnpx0, ¨q “ Lpxnq, and tightness for 2) follows from
below1

Pnpx0, pBM qcq “ Pp|xn| ą Mq ď sup
ně0

E logp|xn| ` 1q

logpM ` 1q
Ñ 0, as M Ñ 8,

where BM is the closed ball of radius M centred at 0. The proof for 1) is similar. l

1Using Markov’s inequality with non-negative monotone function u ÞÑ logpu ` 1q.
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Example 3.7.8 (Tightness) Suppose tξnu are iid and independent of x0, with E|x0| ă 8

and Markov chain xn`1 “ 1
2xn ` ξn`1. Assume also E|ξk| “ a ă 1. The chain is Feller

(check as in Example 3.7.7). The following arguments shows that the probability
distribution of txnu is tight. For all n ě 1

E|xn`1| ď
1

2
E|xn| ` E|ξn`1| ď

1

2

ˆ

1

2
E|xn´1| ` a

˙

` a

“ a`
1

2
a`

1

4
p|xn´2| ` aq

ď a`
1

2
a`

1

4
a` ¨ ¨ ¨ `

1

2n`1
a` E|x0|

ď 2a` E|x0|.

Hence supně0 E|xn| ă 8 and the system has an invariant probability measure. We
remark since we only need to show tPnpx0, ¨qu is tight for some x0, we can simply start
the chain from a fixed point.

The Lyapunov test function method allows us to use this reasoning for more general
systems.



Chapter 4

Stochastic Differential Equations

4.1 Stochastic Integration

In this chapter we review Itô integration (stochastic integration), local martingales,
total variations and quadratic variations. Throughout this chapter, we have a proba-
bility space pΩ,F ,Ft,Pq satisfying the usual assumptions. Denote by Bt “ pB1

t , . . . , B
n
t

an n-dimensional Brownian motion with respect to a filtration Ft, which means that
tBi

tu are independent one dimensional Brownian motion.

We begin by defining the elementary integral
şt
0KsdMs where Kt is an elementary

process, and very quickly we specialise to the case of Mt “ Bt, Brownian motion, We
seek a class of stochastic processes pfsq with the property that there exists a sequence
of stochastic processes Kn P E with Kn converges to f (in some sense), and

şt
0KnpsqdMs

converges (in some sense) to a limit, the limit will be a candidate for the Itô integral
şt
0 fsdBs.

4.2 Elementary Integrals

An elementary stochastic process (with real values) is of the form:

Ktpωq “ K´1pωq1t0uptq `

8
ÿ

i“0

Kipωq1pti,ti`1sptq

where 0 “ t0 ă ¨ ¨ ¨ ă tn ă . . . with limiÑ8 ti “ 8, is any sequence of positive numbers
increasing to infinity, K´1 P F0,Ki P Fti, supi |Ki| is bounded. Let E denotes the
collection of elementary processes.

68



4.2. ELEMENTARY INTEGRALS 69

Definition 4.2.1 Let K P E and let pMsq be a stochastic process. The elementary
integration is defined by

ż t

0
KsdMs :“

8
ÿ

i“1

KipMti`1^t ´Mti^tq.

If t P rtn, tn`1q, the elementary integral expands as follows:

ż t

0
KsdMs “

n´1
ÿ

i“1

KipωqpMti`1pωq ´Mtipωqq `KnpωqpMtpωq ´Mtnpωqq.

Exercise 4.2.2 Given K P E, compute EpKiKjpBti`1 ´BtiqpBtj`1 ´Btj qq.

Definition 4.2.3 A stochastic process pXt, t P Iq is L2 bounded if suptPI ErXts
2 ă 8.

Note that a Brownian motion pBt, t ď T q is an L2 bounded martingale for on any
finite time interval r0, T s.

Proposition 4.2.4 Let Bt be a Brownian motion, and K P E. Then for any interval
r0, T s, p

şt
0KsdBs, q is an L2 bounded continuous martingale, and for any t ą 0, we have

that

Erp

ż t

0
KsdBsq2s “ Er

ż t

0
pKsq2dss p Itô isometryq.

Proof We may assume that the summation is from 1 to N and tN`1 “ t and so

ż t

0
KrdBr “

N
ÿ

i“1

KipBti`1 ´Btiq.

Note that Ki P Fti and Bti`1^t ´Bti^t is independent fo Fti^t. Without loss of generality,
assume that ti ă tj, and ti`1 ď tj.

EpKipBti`1 ´BtiqKjpBtj`1 ´Btj q“ E
”

KiKjpBti`1 ´BtiqE
`

Btj`1 ´Btj

ˇ

ˇ

ˇ
Ftj q

˘

ı

“ 0.

So

Ep

ż t

0
KsdBsq2 “

8
ÿ

i“1

EpK2
i pBti`1^t ´Bti^tqq2

“

8
ÿ

i“1

EpK2
i pti`1 ^ t´ ti ^ tqq

“ E
ż t

0
pKsq2ds.
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Let s ă t, we compute

E

#

N
ÿ

i“1

KipBti`1 ´Btiq|Fs

+

.

Let us analyze the ith interval Ii “ pti, ti`1s.

If ti`1 ď s, then

E
␣

KipBti`1 ´Btiq|Fs

(

“ KipBti`1 ´Btiq “ KipBti`1^s ´Bti^sq.

If s ď ti, then
E
␣

KipBti`1 ´Btiq|Fs

(

“ 0 “ KipBti`1^s ´Bti^sq.

If ti ă s ă ti`1,

EtKipBti`1 ´Btiq|Fsu “ KiEtBti`1 |Fsu ´KiBti “ KipBti`1^s ´Bti^sq.

Summing up the three cases to obtain

Et

ż t

0
KrdBr|Fsu “

ÿ

i

KipBti`1^s ´Bti^sq.

and K ¨B is a martingale. l

Exercise 4.2.5 Show that if pMtq is an L2 bounded martingale, then for any elemen-
tary process Kt,

şt
0KrdMr is an L2 bounded martingale.

4.3 Itô integration

Let pBtq be a Brownian motion.

Definition 4.3.1 We define L2pB, T q to be the set of progressively measurable process
pftq such that

}f}2L2pB,T q :“ E
ż T

0
pfsq2ds ă 8.

Proposition 4.3.2 The set of elementary processes are dense in L2pB, T q.

Proof We prove the case when f P L2pBq is left continuous. First assume f is bounded
and let

fnps, ωq “ f0pωq1t0upsq `
ÿ

jě1

f j
2n

pωq1
t

j
2n

ďsă
j`1
2n

u
.
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Note that f j
2n

is Fj{2n measurable. Since f is left continuous and bounded, |fn|8 ď

|f |8, by the dominated convergence theorem, fn Ñ f in L2pB, T q. If f is not bounded,
let fnpsq “ fs1|fs|ďn. Then

}fn ´ f}2L2pMq ď E
ż 8

0
f2s pωq1tps,ωq:|fps,ωq|ěnuds

pnÑ8q
Ñ 0.

Let g : r0, ts ˆ Ω Ñ R be progressively measurable and such that E
şT
0 g

2ps, ωqdsq ă

8, it can be approximated by continuous functions in L2. In fact, setting gnptq “
şt
0 ne

´npt´rqgprqdr, then gnpωq Ñ gpωq in L2. l

This result hold if B is replaced by an L2-martingale.

Definition 4.3.3 Denote by H2 the set of L2 bounded martingales and H2
0 the sub-

space of L2 bounded martingales with initial value 0.

Proposition 4.3.4 The elementary integration defines a linear map from E to H2
0 .

I : K ÞÑ

ż ¨

0
KsdBs

Furthermore it is isometric:
›

›

›

›

ż ¨

0
KsdBs

›

›

›

›

H2

“ }K}L2pB,T q.

The linear map K Ñ IpKq “
ş¨

0KsdBs extends to L2pB, T q, which is referred as Itô
integral or stochastic integration with respect to the Brownian motion. In other words,

Definition 4.3.5 If f P L2pB, T q and tfnu Ă E is a sequence converging to f in L2pB, T q.
Then

şt
0 fndBs exists. We define the limit to be

şt
0 fsdBs. This limit is independent of the

choices of the converging sequence.

Exercise 4.3.6 Let T ą 0. Suppose that fn Ñ f in L2pr0, T s ˆΩ, show that t
ş¨

0 fnpsqdBsu

is a Cauchy sequence in H2
0 .

4.4 Local martingales and martingale brackets

Definition 4.4.1 An Ft-adapted stochastic process pXtq is a local martingale, if there
exists a non-decreasing sequence of stopping times tTnu with the property that supn Tn “

8 a.s. and such that for any n, pXTn
t 1tTną0u, t ě 0q is a martingale.
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If X0 “ 0, XTn
t 1tTną0u “ XTn

t . If Tn ą 0, then XTn
t 1tTną0u “ XTn

t . Since XTn
t 1tTn“0u “

X01tTn“0u, the role of the multiplier, the indicator function 1tTną0u, is to allow us to not
impose integrability assumption M0.

If Xt is a martingale then ErXts “ ErX0s for all t. If Xt is a local martingale, this
may fail to hold. Furthermore given any function mptq of bounded variation there is a
local martingale such that mptq is its expectation process. A local martingale which is
not a martingale is called a strictly local martingale, otherwise it is a true martingale,
see [2] for discussions related to this.

Definition 4.4.2 Let pXtq and pYtq be two continuous processes. If for any sequence
of partitions with |∆n| Ñ 0,

lim
nÑ8

8
ÿ

j“0

pXt^tnj`1
´Xt^tnj

qpYt^tnj`1
´ Yt^tnj

q

exists in probability, we define the limit to be xX,Y yt.

In particular,

xX,Xyt
P
“ lim

nÑ8

8
ÿ

j“0

pXt^tnj`1
´Xt^tnj

q2.

For simplicity, we denote xX,Xyt by xXyt.

Theorem 4.4.3 For any continuous local martingales pMtq and pNtq, there exists a
unique continuous process xM,Nyt of finite variation vanishing at 0 such that MtNt ´

xM,Nyt is a continuous local martingale. This process is referred as the quadratic vari-
ation of pMtq and pNtq.

We would not indulge in the proof, instead we give some examples.

Theorem 4.4.4 [Burkholder-Davis-Gundy Inequality] For every p ą 0, there exist uni-
versal constants cp and Cp such that if pMt, t P r0, T sq is continuous local martingales
with M0 “ 0,

cpE
´

xM,My
p
2
T

¯

ď Epsup
tďT

|Mt|q
p ď CpE

´

xM,My
p
2
T

¯

.

We may consider also pMt, t ă 8q in which case the T in the above inequality holds
with T replaced by 8 or by a stopping time.

Exercise 4.4.5 Let pMtq is a continuous local martingale with M0 “ 0. If suptă8 Mt P

L1 show that pMtq is a martingale.

Definition 4.4.6 A stochastic process pXt, t P Iq is L2 bounded if suptPI ErXts
2 ă 8.
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Exercise 4.4.7 If H,K is an elementary process, the martingale bracket of their mar-
tingale Itô integrals are:

x

ż ¨

0
KsdBs,

ż ¨

0
HsdBsyt “

ż t

0
HsKsds.

Hint. To show this, by Theorem 4.4.3, it suffices to show that
ż ¨

0
KsdBs

ż ¨

0
HsdBs ´

ż t

0
HsKsds

is a martingale.

Exercise 4.4.8 Let ft, gt be a progressively measurable stochastic processes in L2pB, T q.
Then

x

ż ¨

0
fs dBs,

ż ¨

0
gs dBsyt “

ż t

0
fsgsds.

Hint: First assume that f “ g, using the property of H2, then using polarisation.

4.5 Kunita-Watanabe Inequality*

It is possible to define stochastic integration with respect to a local martingale in the
same as we defined Itô integration, first with elementary processes, then extending by
density. This requires the Kunita-Watanabe inequality

Recall that xM,My correspond to a positive measure and xM,Ny a signed measure,
written as µ` ´ µ´ where µ`, µ´ are positive measures. By |xM,Ny| we mean the
measure corresponds to µ` ` µ´.

Lemma 4.5.1 Let s ď t, we define xM,Nyst :“ xM,Nyt ´ xM,Nys.

xM,Nyst ď
a

xM,Myt ´ xM,Mys

a

xN,Nyt ´ xN,Nys.

Proof For any a, xM ´ aNyt ě 0. This means xM,Myt ` a2xN,Nyt ě 2axM,Nyt. Take

a “

b

xM,Myt
xN,Nyt

to see that

xM,Nyt ď
a

xM,MytxN,Nyt.

A similar proof shows that for s ă t:

xM,Nyt ´ xM,Nys ď
a

xM,Myt ´ xM,Mys

a

xN,Nyt ´ xN,Nys.
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l

Let Hs,Ks be measurable functions by which we mean they are Borel measurable
functions from pR` ˆ Ω,F8 b BpR`q to pR,BpRqq. Approximating them by elementary
functions leads to the following theorem:

Theorem 4.5.2 Let pMtq and pNtq be two continuous local martingales. Let pHtq and
pKtq be measurable processes. Then for t ď 8,

ż t

0
|Hs||Ks| d|xM,Ny|s ď

d

ż t

0
|Hs|2dxM,Mys

d

ż t

0
|Ks|2dxN,Nys, a.s.

The inequality states in particular that the left hand side is finite if the right hand side
is. If furthermore H P L1pdxM,Mysq and K P L1pdxN,Nysq,

ˇ

ˇ

ˇ

ˇ

ż t

0
HsKs dxM,Nys

ˇ

ˇ

ˇ

ˇ

ď

d

ż t

0
|Hs|2dxM,Mys

d

ż t

0
|Ks|2dxN,Nys, a.s.

Proof Let pHsq and pKsq be from E, elementary processes. Let 0 “ t1 ă ¨ ¨ ¨ ă tN`1 be a
partition such that on each sub-interval, both Hspωq and Kspωq are constant in s. WW
write, for H0,K0 P F0, Hi,Ki P Fti,

Htpωq “ H0pωq1t0uptq `

N
ÿ

i“1

Hipωq1pti,ti`1sptq,

and

Ktpωq “ K0pωq1t0uptq `

N
ÿ

i“1

Kipωq1pti,ti`1sptq,

Then
ˇ

ˇ

ˇ

ˇ

ż t

0
HspωqKspωqdxM,Nyspωq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

HipωqKipωqxM,Nyst pωq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

i

|Hipωq||Kipωq||xM,Nyst pωq|

ď

d

ÿ

i

|Hi|
2xM,Myst pωq

d

ÿ

i

|Ki|
2xN,Nyst pωq

“

ˆ
ż 8

0
pHspωqq2dxM,Myspωq

˙
1
2
ˆ
ż 8

0
pKspωqq2dxN,Nyspωq

˙
1
2

.

Take appropriate limit to see the second inequality holds.

Let H̃s “ Hs signpHsKsq
dxM,Nys

|dxM,Nys|
, we see that

ż t

0
|Hs||Ks| d|xM,Ny|s “

ż t

0
H̃sKsdxM,Nys
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and apply the second inequality we see the first inequality holds for all bounded
measurable functions pHsq and pKsq. If they are not bounded, we take a sequence
of cut off functions for Hs and Ks to see that first inequality always hold. They may
however be infinity. l

Apply Hölder Inequality to the above inequality to obtain the following.

Corollary 4.5.3 [Kunita-Watanabe Inequality] For t ď 8, and p ą 1, 1
p ` 1

q “ 1,

E
ż t

0
|Hs||Ks||dxM,Ny|s

ď

˜

E
ˆ
ż t

0
|Hs|2dxM,Mys

˙

p
2

¸

1
p
˜

E
ˆ
ż t

0
|Ks|2dxN,Nys

˙

q
2

¸

1
q

4.6 Stochastic integration w.r.t. semi-martingales

A continuous semi-martingale is of the form Xt “ Mt ` At, where Mt is a continuous
local martingale and At a continuous finite variation process. The decomposition
into the same is unique, up to a almost surely set. It is referred as the Doob-Meyer
decomposition of Xt.

Definition 4.6.1 If Xt “ Mt ` At is a continuous semi-martingale and f is a progres-
sively measurable locally bounded stochastic process, we define

ż t

0
fsdXs “

ż t

0
fsdMs `

ż t

0
fsdAs.

Proposition 4.6.2 LetX,Y be continuous semi-martingales. Let f, g,K be locally bounded
and progressively measurable. Let a, b P R.

1.
şt
0pafs ` bgsqdXs “ a

şt
0 fsdXs ` b

şt
0 gsdXs.

2.
şt
0 fsdpaXs ` bYsq “ a

şt
0 fsdXs ` b

şt
0 fsdYs.

3.
ż t

0
fsd

ˆ
ż s

0
grdXr

˙

“

ż t

0
fsgsdXs.

4. For any stopping time τ ,
ż τ

0
KsdXs “

ż 8

0
1sďτKsdXs “

ż 8

0
KsdX

τ
s .
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5. If Xs is of bounded total variation on r0, ts so is the integral
ş¨

0KsdXs; and if Xs is a
local martingale so is

ş

KsdXs.

Also note that for continuous processes, Riemann sums corresponding to a se-
quence of partitions whose modulus goes to zero converges to the stochastic integral
in probability. Note that this convergence does not help with computation. Although
there are sub-sequences that converges a.s. we do not know which subsequence of
the partition would work and this subsequence would be likely to differ for different
integrands and different times.

Proposition 4.6.3 If pKtq is left continuous and ∆n : 0 “ tn0 ă tn1 ă ¨ ¨ ¨ ă tnNn
“ t is a

sequence of partition of r0, ts such that their modulus goes to zero, then

ż t

0
KsdXs “ lim

nÑ8

Nn
ÿ

i“1

Ktni
pXtni`1

´Xtni
q.

The sum converges in probability.

4.7 Itô’s formula

Consider an Rn-valued stochastic process pXt “ pX1
t , . . . , X

n
t q. Suppose that it is semi-

martingale and Hs a process so that
şt
0HsdXs is defined. We set

ż t

s
HsdXs “

ż t

0
HsdXs ´

ż s

0
HsdXs.

We denote by xX,Xyt the matrix valued process whose entries are xXi, Xjyt.

Let Bt “ pB1
t , . . . , B

m
t q be an m-dimensional Brownian motion. Let σk : R`ˆRn Ñ Rn,

k “ 1, . . . ,m, be vector fields on Rd. We consider the stochastic differential equation

dxt “

m
ÿ

k“1

σkpt, xtqdB
k
t ` σ0pt, xtqdt. (4.1)

Proposition 4.7.1 (The product formula) IfXt and Yt are real valued semi-martingales,

XtYt “ X0Y0 `

ż t

0
XsdYs `

ż t

0
YsdXs ` xX,Y yt

This also provides an understanding, even serve as an definition, for the bracket
process,

xX,Y yt “ XtYt ´X0Y0 ´

ż t

0
XsdYs ´

ż t

0
YsdXs
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Example 4.7.2 If Bt “ pB2
t , . . . , B

n
t q is an n-dimensional BM, then xBi, Bjyt “ δijt,

|Bt|
2 “

ř

i |Bi
t|
2, and

|Bt|
2 “ 2

n
ÿ

i“1

ż t

0
Bi

sdB
i
s ` nt.

Theorem 4.7.3 (Itô’s Formula) Let Xt “ pX1
t , . . . , X

n
t q be a Rn-valued sample continu-

ous semi-martingale and f a C2 real valued function on Rn then for s ă t,

fpXtq “ fpXsq `

n
ÿ

i“1

ż t

s

Bf

Bxi
pXrqdXi

r `
1

2

n
ÿ

i,j“1

ż t

s

B2f

BxiBxj
pXrqdxXi, Xjyr.

In short hand,

fpXtq “ fpXsq `

ż t

s
pDfqpXrqdXr `

1

2

ż t

s
pD2fqpXrqdxX,Xyr.

Sketch proof: By the Taylor expansion for C2 function f : R Ñ R:

fpyq “ fpy0q ` f 1py0qpy ´ y0q `

ż y

y0

py ´ zqf2pzqdz

“ fpy0q ` f 1py0qpy ´ y0q `
1

2
f2py0qpy ´ y0q2 `

ż y

y0

py ´ zqpf2pzq ´ f2py0qqdz.

The remainder term satisfies the bound

|

ż y

y0

py ´ zqpf2pzq ´ f2py0qqdz| ď py ´ y0q2 sup
zPry0,ys

|f2pzq ´ f2py0q|.

Then Itô’s formula follows from

fpXtq ´ fpXsq “

Npnq´1
ÿ

i“0

´

fpXtni`1
q ´ fpXtni

q

¯

“

Npnq´1
ÿ

i“0

f 1pXtni
q

´

Xtni`1
´Xtni

¯

`
1

2

Npnq´1
ÿ

i“0

f2pXtni
q

´

Xtni`1
´Xtni

¯2

`

Npnq´1
ÿ

i“0

´

RpXtni`1
, Xtni

q

¯

.

It is easy to see that the remainder terms,

Npnq´1
ÿ

i“0

sup
tPrtni ,.t

n
i`1s

ˇ

ˇ

ˇ
f2pXtni`1

q ´ f2pXtni
q

ˇ

ˇ

ˇ

´

Xtni`1
´Xtni

¯2
,

converges to zero as the partition size is taken to zero.
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Remark 4.7.4 If T is a stopping time, apply Itô’s formula to Yt “ XT^t to see that

fpXT^tq “ fpX0q `

ż T^t

0
pDfqXrdXr `

1

2

ż T^t

0
pD2fqxrdxX,Xyr.

Example 4.7.5 If Bt “ pB2
t , . . . , B

n
t q is an n-dimensional BM, then xBi, Bjyt “ δijt,

|Bt|
2 “

ř

i |Bi
t|
2, and

|Bt|
2 “ 2

n
ÿ

i“1

ż t

0
Bi

sdB
i
s ` nt.

Example 4.7.6 Let pMtq be a continuous semi-martingale. Then Xt “ eMt´ 1
2

xM,Myt

satisfies the equation:

Xt “ eM0 `

ż t

0
XsdMs.

Let Yt :“ Mt ´ 1
2xM,Myt, then xY, Y yt “ xM,Myt, and Xt “ eYy . Let fpxq “ ex and

apply Itô’s formula to the function f and the process pYtq,

Xt “ eYt “eY0 `

ż t

0
eYsdYs ´

1

2

ż t

0
eYsdxY, Y ys

“ eM0 `

ż t

0
eYsdMs `

1

2

ż t

0
eYsdxM,Mys ´

1

2

ż t

0
eYsdxY, Y ys

“eM0 `

ż t

0
XsdMs.

Definition 4.7.7 If pMtq is a continuous local martingale, eMt´ 1
2

xM,Myt is a continuous
local martingale and is called the exponential martingale of Mt.

Theorem 4.7.8 Let pXtq be a continuous semi-martingale. Assume that B
BtF pt, xq and

B2

BxiBxj
F pt, xq, i, j “ 1, . . . , d, exist and are continuous functions. Then

F pt,Xtq “F p0, X0q `

ż t

0

BF

Bs
ps,Xsqds`

ż t

0
DF ps,XsqdXs

`
1

2

ż t

0
D2F ps,XsqdxXs, Xsy.

4.8 Stochastic Differential Equations

Let us fix a filtered probability space pΩ,F ,Ft, P q. Let Bt “ pB1
t , . . . , B

m
t q be an standard

Ft-Brownian motion on Rn (with B0 “ 0). Let σi, σ0 : R` ˆ Rd Ñ Rd be locally bounded
Borel measurable functions.
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Definition 4.8.1 An adapted continuous stochastic process pxtq, with initial condi-
tion x0, is said to be a (strong) solution to

dxt “

m
ÿ

i“1

σipt, xtqdB
i
t ` σ0pt, xtqdt, (4.2)

if for any t ą 0, the following makes sense and holds almost surely

xt “ x0 `

m
ÿ

k“1

ż t

0
σkps, xsqdBk

s `

ż t

0
σ0ps, xsqds.

We allow solution pxtq to be defined up to a life time t ă τpx0q. A solution is defined
up to time τ , if for all stopping times T ă τ , the following makes sense and holds
almost surely

xT “ x0 `

m
ÿ

k“1

ż T

0
σkps, xsqdBk

s `

ż T

0
bps, xsqds.

Remark 4.8.2 This concept of a local solution can be incorporated into the above
definition by introducing the one point compactification, Rd Y t∆u, of Rd, where ∆ is
an alien state. The compactification is a topological space with the open sets to consist
of open sets of Rd and sets of the form pRdzKqYt∆u where K denotes a compact subset
of Rd. Given a process pXt, t ă τq on Rd we define a process pX̂t, t ě 0q on Rd Y t∆u:

X̂tpωq “

#

Xtpωq, if t ă τpωq

∆, if t ě τpωq.

+

.

If pXt, t ă τq is a continuous process on Rd, then pX̂tq is a continuous process on
Rd Y ∆. Define Ŵ pRdq ” Cpr0, T s;Rd Y ∆q whose elements satisfy that: if Ys “ ∆ then
Ytpωq “ ∆ for all t ě s. The last condition means that once a process enters ∆, it does
not return.

Definition 4.8.3 The SDE is said to have no explosion, if for any initial condition,
there exists a solution defined a.s. for all time t. Otherwise it explodes in finite time
with positive probability.

Definition 4.8.4 The SDE is said to be pathwise unique, if for any two solutions pXtq

and pYtq with the same initial condition X0 “ Y0 a.s., then Xt “ Yt a.s. for all time t.
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4.9 Basic existence and uniqueness theorem

Theorem 4.9.1 Suppose that σi, b : Rd Ñ Rd are Lipschitz continuous. Then for each
x0 P Rd there exists a unique continuous FB

t -adapted stochastic process such that

xt “ x0 `

m
ÿ

k“1

ż t

0
σkpxsqdBk

s `

ż t

0
bpxsqds

for all t a.s. Furthermore for each t, xt is FB
t -measurable.

Proof Fix T ą 1. Define, for all t P r0, T s,

x
p0q

t “ x0,

x
pnq

t “ x0 `

m
ÿ

k“1

ż t

0
σkpxpn´1q

r qdBk
r `

ż t

0
bpxpn´1q

r qdr. (4.3)

We note that,

E sup
tďu

|x
p1q

t ´ x0|2 ď 2E sup
tďu

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“1

ż t

0
σkpx0qBk

t

ˇ

ˇ

ˇ

ˇ

ˇ

2

` 2uE|bpx0q|2

ď 2m
m
ÿ

k“1

E
ˇ

ˇ

ˇ
σkpx0qBk

u

ˇ

ˇ

ˇ

2
` 2u|bpx0q|2

ď 2m
m
ÿ

k“1

C̃2p1 ` |x0|q2EpBk
uq2 ` 2uC̃2p1 ` |x0|2q

“ p2mmu` 2uqpC̃q2p1 ` |x0|q2 “ C0,

where C̃ is the common linear growth constants for σk and b. By induction and
analogous estimation, E suptďu |x

pnq

t |2 is finite and the stochastic integrals make sense.

By construction each px
pnq

t q is sample continuous and is adapted to the filtration of
pBtq.

We estimate the differences between iterations:

E sup
sďt

|xpn`1q
s ´ xpnq

s |2

“ E sup
sďt

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“1

ż s

0

´

σkpxpnq
r q ´ σpxpn´1q

r

¯

dBk
r `

ż s

0

´

bpxpnq
r q ´ bpxpn´1q

r

¯

dr

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

ď 2E sup
sďt

˜

m
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ż s

0

´

σkpxpnq
r q ´ σkpxpn´1q

r

¯

dBk
r

ˇ

ˇ

ˇ

ˇ

¸2

` 2E sup
sďt

ˇ

ˇ

ˇ

ˇ

ż s

0

´

bpxpnq
r q ´ bpxpn´1q

r q

¯

dr

ˇ

ˇ

ˇ

ˇ

2

ď 2m
m
ÿ

k“1

E sup
sďt

ˇ

ˇ

ˇ

ˇ

ż s

0

´

σkpxpnq
r q ´ σkpxpn´1q

r

¯

dBk
r

ˇ

ˇ

ˇ

ˇ

2

` 2E sup
sďt

ˇ

ˇ

ˇ

ˇ

ż s

0

´

bpxpnq
r q ´ bpxpn´1q

r q

¯

dr

ˇ

ˇ

ˇ

ˇ

2

.
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Let K be the common Lipschitz constant for σk and b. By Lemma ??,

E sup
sďt

|xpn`1q
s ´ xpnq

s |2

ď 2mC
m
ÿ

k“1

E
ˆ
ż t

0

ˇ

ˇ

ˇ
σkpxpnq

r q ´ σkpxpn´1q
r q

ˇ

ˇ

ˇ

2
dr

˙

` 2TE
ż t

0

ˇ

ˇ

ˇ
bpxpnq

r q ´ bpxpn´1q
r q

ˇ

ˇ

ˇ

2
dr.

ď 2mC
m
ÿ

k“1

K2

ż t

0
E
ˇ

ˇ

ˇ
xpnq
r ´ xpn´1q

r

ˇ

ˇ

ˇ

2
dr ` 2TK2

ż t

0
E
ˇ

ˇ

ˇ
xpnq
r ´ xpn´1q

r

ˇ

ˇ

ˇ

2
dr.

Let
D “ 2mCmK2 ` 2TK2,

Then

E sup
sďt

|xpn`1q
s ´ xpnq

s |2 ď D

ż t

0
E
ˇ

ˇ

ˇ
xpnq
r ´ xpn´1q

r

ˇ

ˇ

ˇ

2
dr

ď D

ż t

0
E sup

rďs1

ˇ

ˇ

ˇ
xpnq
r ´ xpn´1q

r

ˇ

ˇ

ˇ

2
ds1

ď D2

ż t

0

ż s1

0
E sup

rďs2

ˇ

ˇ

ˇ
xpn´1q
r ´ xpn´2q

r

ˇ

ˇ

ˇ

2
ds2ds1

ď Dn

ż t

0

ż s1

0
. . .

ż sn´1

0
E sup

rďsn

ˇ

ˇ

ˇ
xp1q
r ´ xp0q

r

ˇ

ˇ

ˇ

2
dsn . . . ds2ds1.

By induction we see that

E sup
sďt

|xpn`1q
s ´ xpnq

s |2 ď C1
DnTn

n!
.

whee C1 “ TE suptďT |x
p1q

t ´ x0|2 ď TC0. By Minkowski inequality,
g

f

f

eE

˜

8
ÿ

k“1

sup
sďt

|x
pk`1q
s ´ x

pkq
s |

¸2

ď

8
ÿ

k“1

ˆ

E sup
sďt

|xpk`1q
s ´ xpkq

s |2
˙

1
2

ă 8.

By Fatou’s lemma,

8
ÿ

k“1

ˆ

E sup
sďt

|xpk`1q
s ´ xpkq

s |2
˙

1
2

ď

8
ÿ

k“1

ˆ

E sup
sďt

|xpk`1q
s ´ xpkq

s |2
˙

1
2

ď C1

8
ÿ

k“1

c

DkT k

k!
ă 8.

In particular for almost surely all ω,
8
ÿ

k“1

sup
sďt

|xpk`1q
s pωq ´ xpkq

s pωq| ă 8.
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For such ω, tx
pnq
s pωqu is a Cauchy sequence in Cpr0, ts;Rdq. Let xtpωq “ limnÑ8 x

pnq

t pωq.
The process is continuous in time by the uniform convergence.

We take n Ñ 8 in

x
pnq

t “ x0 `

m
ÿ

k“1

ż t

0
σkpxpn´1q

r qdBk
r `

ż t

0
bpxpn´1q

r qdr.

As n Ñ 8,
şt
0 σkpx

pnq
s qdBk

s Ñ
şt
0 σpxsqdBs in probability. There will be an almost sure

convergent subsequence and this proves that

xt “ x0 `

m
ÿ

k“1

ż t

0
σkpxsqdBk

s `

ż t

0
bpxsqds.

Since each px
pnq

t q is a adapted to the filtration of pBtq, so is its limit.

(2) Uniqueness. Let pxtq and pytq be two solutions with x0 “ y0 a.s. Let C˚ be a
constant.

E sup
sďt

|xs ´ ys|2

“ E sup
sďt

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“1

ż s

0

´

σkpxrq ´ σpyrq

¯

dBk
r `

ż s

0

´

bpxrq ´ bpyrq

¯

dr

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď E sup
sďt

˜

m
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ż s

0

´

σkpxrq ´ σkpyrq

¯

dBk
r

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż s

0

´

bpxrq ´ bpyrq

¯

dr

ˇ

ˇ

ˇ

ˇ

¸2

ď 2m
m
ÿ

k“1

E
ˆ

sup
sďt

ˇ

ˇ

ˇ

ˇ

ż s

0

´

σkpxrq ´ σkpyrq

¯

dBk
r

ˇ

ˇ

ˇ

ˇ

˙2

` 2E

˜

m
ÿ

k“1

sup
sďt

ˇ

ˇ

ˇ

ˇ

ż s

0

´

bpxrq ´ bpyrq

¯

dr

ˇ

ˇ

ˇ

ˇ

¸2

ď 2mC˚

m
ÿ

k“1

E
ˆ
ż t

0
|σkpxrq ´ σkpyrq|

2dr

˙

` 2TE
ż t

0
|bpxrq ´ bpyrq|

2dr

ď 2mC˚

m
ÿ

k“1

K2

ż t

0
E|xr ´ yr|

2dr ` 2TK2

ż t

0
E|xr ´ yr|

2dr

ď p2mmC˚K2T ` 2TK2q

ż t

0
E
ˆ

sup
rďs

|xr ´ yr|2
˙

ds,

By Grownall’s inequality,
E sup

sďt
|xs ´ ys|2 “ 0.

In particular, supsďt |xs ´ ys|2 “ 0 almost surely. l

Lemma 4.9.2 (Grownall’s Inequality/Gronwall’s Lemma) Let T ą 0. Suppose that
f : r0, T s Ñ R` is a locally bounded Borel function such that there are two real numbers
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C and K such that for all 0 ď t,

fptq ď C `K

ż t

0
fpsqds.

Then
fptq ď CeKt, t ď T

In particular if C “ 0, fptq “ 0 for all t ď T .

Definition 4.9.3 A solution pxt, t ă τq of an SDE is a maximal solution if pyt, t ă τ̄q

is any other solution on the same probability space with the same driving noise and
with x0 “ y0 a.s., then τ ě τ̄ a.s.. We say that τ is the explosion time or the life time of
pxtq.

By localisation, or cut off the functions σk we have the following theorem:

Theorem 4.9.4 Suppose that for k “ 1, . . . ,m, σk : Rd Ñ Rd and b : Rd Ñ Rd are locally
Lipschitz continuous , i.e. for each N P N, there exists a number KN such that for all x, y
with |x| ď N, |y| ď N ,

|σkpxq ´ σkpyq| ď KN |x´ y|, |bpxq ´ bpyq| ď KN |x´ y|.

Then there is a maximal solution pxt, t ă τq. If pxt, t ă τq and pyt, t ă ζq be two maximal
solutions with the same initial value x P Rd, then τ “ ζ a.s. and pxtq and pytq are
indistinguishable.

Example 4.9.5 Consider 9xptq “ axptq on R where a P R. Let x0 P R. Then xptq “ x0e
at

is a solution with initial value x0. It is defined for all t ě 0.

Let φtpx0q “ x0e
at. Then pt, xq ÞÑ φtpxq is continuous and φt`spx0q “ φtpφspxqq.

Example 4.9.6 Linear Equation. let a, b P R. Let d “ m “ 1. Then

xptq “ x0e
aBt´a2

2
t`bt

solves
dxt “ a xt dBt ` b xt dt, xp0q “ x0.

The solution exists for all time.

Is this solution unique? The answer is yes. Let yt be a solution starting from the
same point, we could compute and prove that E|xt ´ yt|

2 “ 0 for all t, which implies
that xt “ yt a.s. for all t.
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Example 4.9.7 Consider a particle of mass 1, subject to a force which is proportional
to its own speed, is subject to 9vt “ ´kvt. Its random perturbation equation is the
Langevin equation:

dvtpωq “ ´kvtpωqdt` dBtpωq.

For each realisation of the noise (that means for each ω), the solution is an Ornstein-
Uhlenbeck process,

vtpωq “ v0e
´kt `

ż t

0
e´kpt´rqdBrpωq.

Apply Itô’s formula to e´ktxt we obtain:

ektxt “ x0 `

ż t

0
keksxsds`

ż t

0
eksdxs

“ x0 `

ż t

0
eksdBs.

Multiply both sides by e´kt to conclude.

Example 4.9.8 (1) Small Perturbation. Let ϵ ą 0 be a small number,

xϵt “ x0 `

ż t

0
bpxϵsqds` ϵBt.

As ϵ Ñ 0, xϵt Ñ xt. (Exercise)

(2) Let yϵt “ y0 ` ϵ
şt
0 bpy

ϵ
sqds `

?
ϵWt. Assume that b are bounded, as ϵ Ñ 0, yϵt on any

finite time interval converges uniformly in time on any finite time interval r0, ts,
E sup0ďsďtpy

ϵ
s ´ y0q Ñ 0.

It is worth noticing that Itô’s formula and Itø’s isometry work with stopping times.
Itô isometry may fail for random non-stopping times.

Example 4.9.9 Let τ1 “ inftt ě 0 : sup0ďsďt |Bs| ě 1u.

S “

! 0, sup0ďsďt |Bs| ď 1

τ1, τ1 ď 1.

Then BS “ 1 if τ1 ď 1 and BS “ B0 “ 0 otherwise. Then

Ep

ż S

0
dBsq “ EpBS1tτ1ď1u “ Ppτ1 ď 1q ­“ 0.
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4.10 Stratonovich integral

Let ∆ : 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ t be a sequence of partition of r0, ts and denote:
|∆| “ maxi |ti`1 ´ ti|. We have seen that

ż t

0
fpsqdBs “ lim

|∆|Ñ0

ÿ

i

fptiqpBti`1 ´Btiq,

where the limit is taken in probability.

On the other hand, if f and g are continuous and g is a function of finite total
variation, then the Riemann-Stieljes integral is defined by

ż t

0
fpsqdgs “ lim

ÿ

fps˚
j qpgsj`1 ´ gsj q

where the limit is independent of the choices of sj P rsj , sj`1s. In general, an integral
şt
0 fsdgs can be defined as a continuous map from Cα ˆ Cβ Ñ Cγ if and only if α`β ą 1.

Consequently,
şt
0 fpsqdBs is not in general an almost sure limit. The choice of the

evaluation point for the integrand is also relevant. The sum

ÿ

i

1

2
pfpti`1 ` fptiqqpBti`1 ´Btiq “

ÿ

i

fptiqpBti`1 ´Btiq `
1

2

ÿ

i

pfpti`1 ´ fptiqqpBti`1 ´Btiq,

the first sum converges to the Itô integral, while the second to the bracket 1
2xf,Byt.

Definition 4.10.1 Let pxtq be continuous semi-martingale and pytq a stochastic pro-
cess such that the integral below makes sense. The Stratonovich integral is defined
as:

ż t

0
xs ˝ dxs :“

ż t

0
ysdxs `

1

2
xx, yyt.

Note that if xt, yt be real valued semi-martingales, f : R Ñ R be C2, then

xfpy¨q, xyt “

ż t

0
f 1pysqdxy, xys.

Particular interesting is the case where xt “ Bt be a Brownian motion, and yt a solu-
tion to

dyt “ Y pytqdBt ` Y0pytqdt.

Then,

xfpy¨q, Byt “

ż t

0
f 1pysqY pysqds.
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Lemma 4.10.2 Let Bt “ pB1
t , . . . , B

m
t q be a m-dimensional Brownian motion. There is

the following Itô’s formula for solution of the equation

dxt “

m
ÿ

j“1

Xjpxtq ˝ dBj
t `X0pxtqdt.

Let f : Rd Ñ R be any C3 function, and Xj P C2 and X0 Lipschitz continuous such that
there is a global solution. Then,

fpxtq “ fpx0q `

ż t

0
DfpxsqpXpxsqdBsq `

ż t

0
Lfpxsqds (4.4)

where
Lfpxq “

1

2

ÿ

XiXif `X0f

and XpxsqdBs is shorthand for
ř

j XjpxsqdBj
s .

For solutions of the Itô integral

dxt “

m
ÿ

j“1

Xjpxtq ˝ dBj
t `X0pxtqdt,

(4.4) holds with

Lfpxq “
1

2

d
ÿ

i,j“1

ai,jpxq
B2f

BxiBxj
pxq `

d
ÿ

j“1

Xj
0pxq

Bf

Bxj
,

where ai,jpxq “
řm

k“1X
i
kpxqXi

kpxq.

4.11 weak solution, explosion, and uniqueness*

Definition 4.11.1 A d-dimensional stochastic process pxt, t ă τq, where τ ď 8, on a
probability space pΩ,G, P q is a (weak) solution to the SDE (of Markovian type)

dxt “ σpt, xtqdBt ` bpt, xtqdt. (4.5)

If there exists a filtration pFtq such that

(1) xt is adapted to Ft,

(2) a Ft Brownian motion Bt “ pB1
t , . . . , B

m
t q with B0 “ 0;

(3) for all stopping times T ă τ , the following makes sense and holds almost surely

xT “ x0 `

m
ÿ

k“1

ż T

0
σkps, xsqdBk

s `

ż T

0
bps, xsqds.
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We may replace (3) by (3’)

(3’) an adapted continuous stochastic process x¨ in Cpr0,8q;Rd Y t∆uq, s.t. for all
t ě 0,

xt “ x0 `

m
ÿ

k“1

ż t

0
σkps, xsqdBk

s `

ż t

0
bps, xsqds, a.s.

In essence the SDE holds on tt ă τpωqu. The maximal time τ , up to which a solution
is defined is the explosion time, the solution pxt, t ă τq is the maximal solution.

Definition 4.11.2 A solution is a global solution is its life time infinite. We say that
the SDE does not explode from x0 if its solution from x0 is global. We say that the
SDE does not explode if all of its solutions are global.

Definition 4.11.3 A solution pxt, Btq on pΩ,F ,Ft, P q is said to be a strong solution, if
xt is adapted to the filtration of Bt for each t. By a weak solution we mean one which
is not strong.

Definition 4.11.4 If, whenever pxtq and px̃tq are two solutions with x0 “ x̃0 almost
surely, the probability distribution of txt : t ě 0u is the same as the probability distri-
bution of tx̃t, t ě 0u, we say that uniqueness in law holds.

Uniqueness in law implies the following stronger conclusion: whenever x0 and x̃0 have
the same distribution, the corresponding solutions have the same law.

Definition 4.11.5 We say pathwise uniqueness of solution holds for an SDE, If when-
ever pxtq and px̃tq are two solutions for the SDE on the same probability space pΩ,F ,Ft, P q

with the same driving Brownian motion pBtq and same initial data ( x0 “ x̃0 a.s.), then
xt “ x̃t for all t ě 0 almost surely.

Before giving an example, we state Lévy’s martingale characterization Theorem.
In dimension 1, it is as follows. An Ft adapted continuous real valued stochastic
process Bt vanishing at 0 is a standard Ft-Brownian motion if and only if pBtq is an
Ft-martingale with quadratic variation t.

Theorem 4.11.6 Let T be a finite stopping time. Then pBT`s ´BT , s ě 0q is a Brownian
motion.

Definition 4.11.7 An n dimensional stochastic process pX1
t , . . . , X

n
t q is a Ft local-

martingale if each component is a Ft local-martingale.
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Theorem 4.11.8 [Lévy’s Martingale Characterization Theorem] An pFtq adapted sam-
ple continuous stochastic process pBtq in Rd vanishing at 0 is a pFtq-Brownian motion if
and only if each pBtq is a pFtq local martingale and xBi, Bjyt “ δi,jt.

Theorem 4.11.9 (Dambis, Dubins-Schwartz) Let Ft be a right continuous filtration.
Let pMtq be a continuous local martingale vanishing at 0 such that xM,My8 “ 8. Define

Tt “ infts : xM,Mys ą tu.

Then MTt is an FTt Brownian motion and Mt “ BxM,Myt a.s..

The condition on the bracket assures that the time change Tt is almost surely finite
for all t. Apply Lévy’s Characterization Theorem, Theorem ??, for Brownian motions.

Example 4.11.10 (Tanaka’s SDE) Let

signpxq “

#

´1, if x ď 0

1, if x ą 0.

and consider the following Tanaka’s SDE, defined on R,

dxt “ signpxtqdBt.

If pxtq is a solution of Tanaka’s SDE with initial x0, then xt ´ x0 “
şt
0 sgnpxsqdBs is a

Brownian motion, by Lévy Characterisation Theorem. The distribution of pxs, s ď tq

is the Wiener measure on Cx0pr0, ts;Rdq, the space of continuous functions with initial
value x0. So uniqueness in law holds.

If pxtq solves Tanaka’s equation xt “
şt
0 xsdBs (initial value 0), then so does p´xsq.

Pathewise uniquness fails.

We construct a solution. In fact, let pWtq be a Brownian motion on any probability
space with B0 “ 0 and let x0 P Rd, we claim that x`Wt solves Tanaka’s equation driven
by a Brownian motion B which we specify below. Define

Bt “

ż t

0
signpx`Wsq dWs.

This is a local martingale with quadratic variation t and hence a Brownian motion.
Furthermore

ż t

0
signpx`WsqdBs “

ż t

0
dWs “ Wt.

Thus

x`Wt “ x`

ż t

0
signpx`WsqdBs,

as claimed. Taking x “ 0, it is clear that Bt “
şt
0 signpWsq dWs contains less information

than Wt.
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Example 4.11.11 ODE 9xt “ pxtq
αdt, α ă 1, which has two solutions from zero: the

trivial solution 0 and xt “ p1 ´ αq
1

1´α t
1

1´α . Both uniqueness fails.

Example 4.11.12 Dimension d “ 1. Consider dxt “ σpxtqdWt. Suppose that σ is
Hölder continuous of order α, |σpxq´σpyq| ď c|x´y|α for all x, y. If α ě 1{2 then pathwise
uniqueness holds for dxt “ σpxtqdWt. If α ă 1{2 uniqueness no longer holds. For α ą

1{2 this goes back to Skorohod (62-65) and Tanaka(64). The α “ 1{2 case is credited to
Yamada-Watanabe, and referred as the square root problem in mathematical finance
modelling.

4.11.1 The Yamada-Watanabe Theorem

The following beautiful, and somewhat surprising, theorem of Yamada and Watanabe,
states that the existence of a weak solution for any initial distribution together with
pathwise uniqueness implies the existence of a unique strong solution.

Proposition 4.11.13 If pathwise uniqueness holds then any solution is a strong solu-
tion and uniqueness in law holds.

For the precise meaning of ‘universally measurable’ see P163 of Ikeda-Watanabe’s
book [8].

Theorem 4.11.14 (The Yamada-Watanabe Theorem) If for each initial probability dis-
tribution there is a weak solution to the SDE and suppose that pathwise uniqueness
holds then there exists a unique strong solution. By this we meant that there is a pro-
gressively measurable map: F : Rd ˆ Wm

0 Ñ Ŵ d, where the σ-algebras are ‘universally
complete’, such that

1. for any probability measure µ on Rd there exists F̃ that is measurable w.r.t. BpRdˆ

Wm
0 qµˆP s.t. F px, ωq “ F̃ px, ωq a.s.. If ξ0 P F0 we set F pξ0, Bq “ F̃ pξ0, Bq.

2. For any BM pBtq on a probability space pΩ,F ,Ft, P q, and any ξ0 P F0, xt “ F̃tpξ0, Btq

is a solution to the SDE with driving noise pBtq and initial value ξ0.

3. If xt is a solution to the equation with driving noise pBtq, then xt “ Ftpx0, Bq a.s.

In another word, for any Bt, and x0 P Rd, Ftpx0, Bq is a solution with the driving
noise Bt. If xt is a solution on a filtered probability space with driving noise Bt, then
xt “ Ftpx,Bq a.s.

We do not prove this theorem, but refer to Ikeda-Watanabe and Revuz-Yor. The
following observation is important for the proof of the Yamada-Watanabe Theorem.
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Given two solutions on two probability space we could build them on the same prob-
ability space: Ŵ d ˆ Ŵ d ˆWm.

Lemma 4.11.15 Let f, g be locally bounded predictable processes (measurable with
respect to the filtration generated by left continuous processes), and B,W continuous
semi-martingales. If pf,Bq “ pg,W q in distribution then

pf,B,

ż t

0
fsdBsq

law
“ pg,W,

ż t

0
gsdWsq,

i.e. they have the same probability distribution.

See exercise 5.16 Revuz-Yor.

Theorem 4.11.16 Let pMtq be a continuous local martingale. The exponential martin-
gale Nt :“ eMt´ 1

2
xM,Myt is a martingale if and only if EpNtq “ 1 for all t.

Proof If pNtq is a martingale, the statement that its expectation is constant in t

follows from the definition. We prove the converse. Since pNtq is a continuous local
martingale, it is a super-martingale. Indeed for a reducing sequence of stopping times
Tn and any pair of real numbers 0 ď s ď t, we apply Fatou’s lemma:

EpNt|Fsq ď lim
nÑ8

EpNTn
t |Fsq “ lim

nÑ8
NTn

s “ Ns.

Let T be a stopping time bounded by a positive number K. By the optional stopping
theorem,

EpNT q ě EpNKq “ 1, EpNT q ď EpN0q “ 1.

Thus EpNT q “ 1 and pNtq is a martingale. l

This can be generalized to stochastic processes that is not positive valued. Let
pMtq be a continuous local martingale with E|M0| ă 8. Suppose that the family
tM´

T , T bounded stopping times u is uniformly integrable. Then pMtq is a super mar-
tingale. It is a martingale if and only if EMt “ EM0, see Prop. 2.2 in [?]

4.12 Cocycle property and Markov property

Suppose that the SDE

dxt “

m
ÿ

j“1

Xjpt, xtq ˝ dBj
t `X0pt, xtqdt,
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has a unique strong solution and the SDE is complete (i..e from each initial point
the solution exists for all time). We denote by φtpxq the function given by the Yamada-
Watanabe theorem, which is the solution to the SDE with initial x, and it is continuous
in time and adapted. Furthermore, if η is independent of Fs

t “ σpWr ´ Ws : r ě sq,
denote by φs,tpηq the solution to:

xt “ η `
ÿ

k

ż t

s
XkpxrqdW k

r `

ż t

s
Xrpxrqdr, t ě s.

The solution theory for φtpxq remains to hold. We note φ0,tpxq ” φ0pxq. Then the
solutions of the SDE is a, time in-homogeneous, Markov process if uniqueness of
solutions holds. Its transition probability is given by

Ps,tpx,Aq “ Ppφs,tpxq P Aq.

We shall focus on the time homogeneous case.

Theorem 4.12.1 Assume that pathwise uniqueness holds and the SDE

dxt “

m
ÿ

j“1

Xjpxtq ˝ dBj
t `X0pxtqdt,

is complete. Then, the following cocycle property holds for any x P Rn:

φs,tpφspx, ωq, ωq “ φ0,tpx, ωq, @s ď t,

almost surely. Furthermore,

φs,tpx, ωq “ φ0,t´spφspx, ωq, θsωq.

Consequently, the solution is a (time homogenesoud) Markov process with transition
probability

Ptpx,Aq “ Ppφs,s`tpx, ωqq.

Proof

φtpxq “ φspxq `
ÿ

k

ż t

s
XkpxrqdW k

r `

ż t

s
Xrpxrqdr.

By parhwise uniqueness, φs,tpφspx, ωq, ωq “ φ0,tpx, ωq. Let η be independent of Fs
t ,

consider the equation:

xt “ η `
ÿ

k

ż t

s
XkpxrqdW k

r `

ż t

s
Xrpxrqdr.
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Define W̃r “ θsW prq “ Ws`r ´Ws. Then, by a change of variable,

xt “ η `
ÿ

k

ż t´s

0
Xkpxu`sqdW k

u`s `

ż t´s

0
Xrpxu`sqdu.

which means

xs`pt´sq “ η `
ÿ

k

ż t´s

0
Xkpxu`sqdW̃ k

u `

ż t´s

0
Xrpxu`sqdu,

consequently by pathwise uniqueness: φs,tpx, ωq “ φ0,t´spη, θsωq. Set Ptpx,Aq “ Ppφtpxq P

Aq, then by the cocycle property,

Ppφs`tpxq P A|Fsq “ Ppφ0,tpxs, θsωq P A|Fsq “ Ptpφspxq, Aq,

almost surely, proving that the solution is a time homogoneous Markov process with
transition probabilities Ptpx, ¨q. l

4.13 The Markov semi-group

We continue to study the SDE dxt “
řm

j“1XjpxtqdB
j
t ` X0pxtqdt, under the assumption

of completeness and pathwise uniqueness. Let Fs
t “ σtpWr ´ Ws : s ď r ď tu and

φs,tp´q the solution flow with initial time s. Recall that Ptpx,Aq “ Epφtpxq P Aq and
Ppφs`tpxq P A|Fsq “ Ptpφspxq, Aq. Define the semi-group :

Ttfpxq “

ż

Rd
fpyqPtpx, dyq.

Lemma 4.13.1 Let η be a random variable on Rd, independent of Fs
t . Suppose that

pathwise uniqueess and non-explosion holds. Let xt :“ φs,tpηq denote the solution flow
φs,spηq “ η. Then for any function f P C2, we have

fpxtq “ fpηq `

ż t

s
dfpxrqpXipxrq dW i

rqq `

ż t

s
Lfpxrqdr,

where for ai,jpxq “
řm

k“1X
i
kpxqXj

kpxq,

Lfpxq “
1

2

d
ÿ

i,j“1

ai,jpxq
B2f

Bxixj
pxq `

d
ÿ

l“1

bl
Bf

Bxl
pxq.

If f P BC2 and if Xk, where k “ 0, 1, . . . ,m, are locally Lipschitz continuous and grow at
most linearly, then

Ttfpxq ´ fpxq “

ż t

0
TsLfpxqdr, (4.6)
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Proof The formula for fpxtq follows from Itô’s formula. If
řm

k“1 |Xk| grows at most
linearly and suprďT Ep|φs,r|2q ă 8 (this is the case if all the vector fields Xi are locally
Lipschitz continuous and grow at most linearly), then for any f P BC2, we have

Erfpxtqs “ Erfpηqs `

ż t

s
ELfpxrqdr.

Taking η “ x, leading to

Ttfpxq “ fpxq `

ż t

0
TsLfpxqdr,

as claimed. l

4.14 Strongly continuous semi-group on C0

We now want to show that L is the generator of Tt and to determine the domain of L. If
s ÞÑ Tsf as a continuous map on a subspace E of bounded measurable functions (i.e.
Ts is strongly continuous), then fundamental theorem of Calculus allows to conclude
that limtÑ0

1
t pTtf ´ fq Ñ Lf in the supremum norm. Note that the heat semi-group is

not strongly continuous on bounded measurable function, it is however continuous
on C8

K , smooth function with compact support.

4.14.1 Strongly continuous semi-group on a Banach space

An unbounded linear operator on a Banach space E is never defined on the whole
space. It is useful to know the domain of the generator, which is however often tricky
to identify. The domain can be thought of as ‘smooth’ functions. The semigroup Tt is
thought of to smooth out a function, or at least not to rough it, for t ą 0. Similarly,
integration

şt
0 is a smoothing operation. The integral

şt
0 Tsxds is defined by Riemann

sum on E.

Theorem 4.14.1 Let Tt : E Ñ E be a strongly continuous semigroup on a Banach space
E. Let

`

L,DpLq
˘

denote its generator. Then the following hold:

1. If x P E and t ą 0, then
ż t

0
Tsx ds P DpLq

and

Ttx´ x “ L
ˆ
ż t

0
Tsxds

˙

.
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2. If x P DpLq, then Ttx P DpLq for any t ą 0 and

d

dt
Ttx “ TtLx “ LpTtxq.

3. DpLq is dense in E and L is closed.

Proof (i) We have

1

h

ˆ

Th

ż t

0
Tsx ds´

ż t

0
Tsx ds

˙

“
1

h

ˆ
ż t`h

h
Tsx ds´

ż t

0
Tsx ds

˙

“
1

h

ż t`h

t
Tsx ds´

1

h

ż h

0
Tsx ds Ñ Ttx´ x

as h Œ 0 since t ÞÑ Ttx is continuous.

(ii) If x P DpLq and t ą 0, then

ThTtx´ Ttx

h
“ Tt

Thx´ x

h
Ñ TtLx

by continuity of Tt. Hence, Ttx P DpLq and LTtx “ TtLx. Moreover,

d

dt
Ttx “ lim

hÑ0

Tt`hx´ Ttx

h
“ TtLx “ LTtx.

(iii) Since 1
t

şt
0 Tsxds P DpLq for each x P E and t ą 0 and

x “ lim
hÑ0

1

h

ż h

0
Tsx ds,

we see that x P DpLq.

Finally we show that L is closed. Let pxnq Ă DpLq, xn Ñ x, and suppose that
Lxn Ñ y. Then, by (ii),

Ttxn ´ xn “

ż t

0
TsLxnds.

Taking n Ñ 8, we see that Ttx´x “
şt
0 Tsyds and Ttx´x

t Ñ y. Thus, x P DpLq and Lx “ y.
Consequently, L is closed. l

4.14.2 Strongly continuous semigroup arising from SDEs

Definition 4.14.2 A Markov-semigroup Tt is said to have the C0-property if when it
take C0pX q Ñ C0pX q. Equivalently, Tt : C0pX q Ñ C0pX q is strongly continuous.
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Note that one way to show the C0 property is to show that limxÑ8 φtpxq “ 0 where
φtpxq denotes the solution flow to the SDE. Observe also that

Pp
1

|φtpxq|2 ` 1
ą Mq ď

1

M
Ep

1

|φtpxq|2 ` 1
q,

which converges to zero, as x Ñ 8, under the linear growth and locally Lipschitz
continuous condition.

To show TtC0 Ă C0 it is equivalent to showing that limxÑ8 Ptpx,Kq “ 0.

Lemma 4.14.3 Let Tt be a Markov semigroup and xt a time homogeneous Markov pro-
cess such that Ttfpxq “ Erfpxt`sq|Fsq. Then Tt restricts to C0pX q if and only if for any
compact set K,

lim
xÑ8

PpXt P Kq “ 0.

Proof Let f P C0 and K be a compact set. Then

|Tf pxq| ď |ErEpfpxtq|x0 “ xq1xtPKqs| ` |Epfpxtq|x0 “ xq1xtRKq ď }f}8Ppxt P Kq ` sup
xRK

|fpxq|.

For any ϵ ą 0 there exists Kϵ such that outside of which |f | ď ϵ{2. Thus, taking
limxÑ8 PpXt P Kq “ 0, l

Example 4.14.4 The heat semi-group is a strongly continuous semi-group on C0. We
first take f P C8

K . Since Ttfpxq “ Efpx`Btq and

fpx`Btq “ fpxq `
1

2

ż t

0
∆fpxsqds`

ż t

0
dfpx`BsqdBs.

Taking expectation we obtain

Ttfpxq “ fpxq `
1

2

ż t

0
Tsf

2pxqds.

Suppose f has compact support K, Tsf2 converges uniformly on K. Hence Tt is
a strongly continuous on C8

K , which is a dense subset of C0. Since }Tt} ď 1, the
conclusion holds.

Proposition 4.14.5 Suppose that the vector fields are locally Lipschitz continuous and
grow at most linearly, and suppose that its corresponding Markov-semigroup has the
C0-property. Let L denotes the Markov generator of Tt. Then any f P C2

K is in the domain
of L and

Lfpxq “
1

2

d
ÿ

i,j“1

ai,jpxq
B2f

Bxixj
pxq ` dfpX0q.
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Furthermore, Ttf solves backward Kolmogorov equation.

du

dt
“ Lut, up0, ¨q “ f.

Proof The SDE is conservative and the solutions have finite p-th moments, bounded
uniformly in

Suppose that Tt has the C0-property, Under the conditions on Xi, Lf P C0, t ÞÑ

TtpLfq is continuous. Apply the fundamental theorem of calculus to the following
identity on C0:

Ttf “ f `

ż t

0
TsLfdr,

to see that Lf is indeed the derivative of Ttf at t “ 0. Consequently C2
K is in the

domain of the generator. Furthermore, if L is the generator of a semi-group Tt, and if
f P DpLq, then Tsf P DpLq by Theorem 4.14.1 and ut :“ Ttf solves the Cauchy problem

du

dt
“ Lut, up0, ¨q “ f.

This completes the proof. l

Example 4.14.6 Let Ttfpxq “ Efpx ` Btq, where Bt is an n dimensional Brownian
motion. Then for f P C2,

Ttfpxq “
1

?
2πt

n

ż

fpx` yqe´
|y|2

2t dy “
1

?
2π

n

ż

fpx`
?
tyqe´

|y|2

2 dy.

Taylor expand around x gives, for some s P r0, 1s,

Ttfpxq ´ fpxq “
1

?
2π

n

ż

?
tx∇fpxq, yy `

1

2t
x∇2fpx` s

?
tyqy, yye´

|y|2

2 dy.

Using the mean zero property, for f P C2
K ,

Ttfpxq ´ fpxq

t
“

1
?
2π

n

ż

1

2
x∇2fpx` s

?
tyqy, yye´

|y|2

2 dy Ñ
1

2
tr∇2fpxq “

1

2
∆fpxq.

Exercise 4.14.7 Check that Tt preserves the space C0pRnq.

Definition 4.14.8 The L2-adjoint of L, denote by L˚, is a linear operator defined as
follows. g P L2 is in the domain of L˚ if

ż

Rd
Lfgdx “

ż

Rd
fL˚gdx

holds for any f P DompLq.
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We observe that for the generator of the SDE,

L˚fpxq “ ´ divpbfq `
1

2

ÿ

i,j

ai,j
B2f

BxiBxj

where
divpbfq “ f div b` xb,∇fy.

Suppose that the probability measure of xt is absolutely continuous with respect
to the Lebesgue measure. We write:

Ptpx` 0, dxq “ ptpx0, xqdx.

By (4.6),
ż

Rd
fpyqptpx0, xqdx´ fpx0q “

ż t

0

ż

Rd
Lfpyqptpx0, xqdx.

We therefore expect that pt solves the Fokker-Planck equation (Kolmogorov’s forward
equation):

Bptpx0, xq

Bt
“ L˚ptpx0, xq, p0px0, ¨q “ δx0 . (4.7)

4.14.3 Strong complete, Feller Property, and Strong Markov property

Definition 4.14.9 An SDE is strongly complete if for every initial point there exists a
version of the solution which we denote by φtpx, ωq satisfying the following property:
for almost surely all ω,

pt, xq ÞÑ φtpx, ωq

is continuous from R` ˆ Rd Ñ Rd.

If Xj are Lipschitz continuous, strong completeness holds. The following equation has
a global solution from any initial point.

dxt “ py2t ´ x2t q dW 1
t ` 2xtyt dW

2
t , (4.8)

dyt “ ´2xtyt dW
1
t ` px2t ´ y2t q dW 2

t ,

where pW 1
t ,W

2
t q is a Brownian motion on R2. It is not strong complete

Proposition 4.14.10 If Xi are Lipschitz continuous, then the SDE is strongly complete.

Lemma 4.14.11 If strong completeness holds ( indeed we only need to assume that
x ÞÑ φtpx, ωq is continuous in probability for every t), Feller property holds for Tt. Conse-
quently, the solutions are strong Markov processes.

The Feller property follows from the dominated convergence theorem.
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4.15 Martingale Considerations

The following theorems show that the generator of a strongly continuous semigroup
determines it.

Theorem 4.15.1 Let Tt and St be strongly continuous semigroups of bounded linear
operators with the same generator, then Tt “ St for all t ě 0.

Proof Let us denote the generator by L. Since DpLq is dense, and Tt, St are continuous
linear operators, it is sufficient to show that Tt “ St on DpLq. Note that S0 “ T0. Take
x in the domain, then, for each r ě 0, Srx, Trx P DpLq. Hence,

d

ds
St´sTsx “ ´LSt´spTsxq ` St´spLTsxq “ 0.

In the last line, we used part (ii) of theorem 4.14.1 to commute L and its generator.
This means that s ÞÑ St´sTsx is a constant, concluding the proof. l

With stochastic differential equations of Markovian type, on a manifold without a
boundary, it is easy to extract the formal generator, we hope knowing the generator
on C8

K is sufficient to identify the transition functions. Then if the martingale problem
is well posed we are in good business.

Before closing this section, note that it is remarkable that a strongly continuous
semi-group on E is automatically differentiable on a dense set of E and on which x

solves the equation:
d

dt
Ttx “ LTtx.

As we will see later it is often easy to identify the form of the generator for the semi-
group corresponds to a Markov process on the class C8

K , the space of smooth func-
tions on the compact support, should the space has no boundary. Then for such
functions Ttf solves the Cauchy problem d

dtu “ u with up0, ¨q “ f .

Definition 4.15.2 The Markov uniqueness problem concerns whether there exists a
unique Markov process on the continuous path space over a complete Riemannian
manifold such that its Markov generator is the infinite dimensional Laplacian. This
remains unsolved for a general Riemannian manifold.

Example 4.15.3 (BM on R`, Reflecting boundary) How do we keep a Brownian mo-
tion starting with x ą 0 in r0,8q? One way is to reflect it back. The reflected Brownian
motion behaves like a Brownian motion while away from 0, at 0, it moves only to the
right. A Brownian motion on R with initial condition x reflected at 0 behaves like a
Brownian motion from x before hitting 0, at 0 it reflects immediately, so it spent 0 time
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on the boundary (
şt
0 1t0upXsqds “ 0.) A realisation of the reflected Brownian motion is:

x`Bt|.
Exercise. Show that |x`Bt| is a Markov process and the semi-group is: for x ě 0,

Ttfpxq “
1

?
2πt

ż 8

0
fpyqe´

|y´x|2

2t ` e´
|y`x|2

2t dy.

Then, Lf “ 1
2f

2 with domain:

tf P C0pRq : f 1 P C0pR`q, f2 P C0pR`q, f 1p0q “ 0u.

Definition 4.15.4 If pXtq is a Markov process on X and Tt is a semigroup of bounded
linear operators on a closed subspace E Ă BbpX q, where E is separable, s.t.

TtfpXsq “ EpfpXt`sq|Fsq, a.s. @f P E,

we say that Xt corresponds to Tt.

Consequently, if µ “ LpX0q is the initial distribution, ErTtfpX0qs “
ş

X Ttfpxqµpdxq.
The solution of an SDE with Lipschitz continuous coefficients corresponds to its semi-
group.

Proposition 4.15.5 [3, pp161] Let X be a separable metric space and let E Ă BbpX q

be closed sub-space which is measure determining. Let pTtq be a semigroup of bounded
linear operators on E and pXtq be a Markov process on X , corresponding to Tt, and
with initial distribution µ. Then Tt and µ uniquely determine the finite dimensional
distributions of pXtq.

Proof Let t ą 0. Since for every f P E,

ErfpXtqs “

ż

X
Ttfpxqµpdxq “

ż

X
fpxqpTtq˚µpdxq,

and E is measure determining, the distribution of Xt equals pTtq˚µ. For the multi-
dimensional distributions we use that

L “ tfpxq “ Πn
i“1fipxiq : fi P E Y t1u, n ě 1u

is separating on Πn
i“1X , see Theorem 2.2.8. We claim for any n ě 1, f1, . . . , fn P E, and

0 ď t1 ă ¨ ¨ ¨ ă tn,

ErΠn
i“1fipXtiqs “ Tt1

´

f1 ˆ ¨ ¨ ¨ ˆ Ttn´tn´1fnqpXt1q

¯

.

which means that the finite dimensional distribution of Xt is determined. We prove
the above claim by induction. For n “ 2, this is

Epf1pXt1qf2pXt2qq “ Erpf1Tt2´t1f2qpXt1qs,
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so the two point motion is determined. Assume this holds for k ď n ´ 1, we prove by
induction and by the Markov property. For t1 ă t2 ă ¨ ¨ ¨ ă tn,

ErΠn
i“1fipXtiqs “ E

`

f1pXt1qEpΠn
i“2fipXtiq|Ft1q

˘

“ E
´

f1pXt1q

´

Tt2´t1

´

f2 ˆ ¨ ¨ ¨ ˆ Ttn´tn´1fn

¯

pXt1q

¯¯

,

this concludes the proof. l

Proposition 4.15.6 Let Tt be a strongly continuous semigroup on a Banach space E Ă

BbpX q with generator L. Let pXtq be a Cádlág Markov process corresponding to Tt. Then
for every f P DpLq,

Mf
t “ fpXtq ´

ż t

0
LfpXrqdr

is a martingale.

Proof Let s ă t. The cádlág property of Xr implies that r ÞÑ LfpXrq is measurable.
Note that f and Lf , both belongs to E Ă BbpX q, are bounded, integrals are finite. It is
then trivial to see that

EpMf
t ´Mf

s |Fsq “ E
“

fpXtq ´ fpXsq
ˇ

ˇFs

‰

´ E
„
ż t

s
LfpXrqdr

ˇ

ˇFs

ȷ

“ Tt´sfpXsq ´ fpXsq ´

ż t

s
Tr´sLfpXsq dr

“ Tt´sfpXsq ´ fpXsq ´

ż t

s

d

dr
Tr´sfpXsq dr “ 0.

In the last step we used the fact that, for a strongly continuous semigroup, LTtf “

TtLf “ d
dtTtf , for every f P DpLq. This completes the proof. l

The converse holds if E “ C0pX q.

Proposition 4.15.7 Let Tt be a strongly continuous semigroup on C0pX q with gener-
ator L. Suppose that pXtq is a Cádlág Markov process corresponding to Tt and with
deterministic initial condition x. Suppose that f, g P C0pX q and

Nt “ fpXtq ´

ż t

0
gpXrqdr

is a martingale. Then f P DpLq and Lf “ g.

Proof Note that g P C0pX q is bounded. Again the regularity on Xt implies that the
integral

şt
0 gpXrqdr is well defined. Since Nt is a martingale,

ErfpXtqs ´ E
„
ż t

0
gpXrqdr

ȷ

“ EN0 “ ErfpX0qs.
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Take X0 “ δx, then fpxq “
ş

X fpyqδxpdyq “ ErfpX0qs. Since Xt is a Markov process
corresponding to Tt with initial point x and since f is continuous,

Ttfpxq “ ErTtfpX0qs “ ErErfpXtq
ˇ

ˇ X0ss “ ErfpXtqs.

By Fubini’s theorem,

1

t
rTtfpxq ´ fpxqs “

1

t
E
„
ż t

0
gpXrqdr

ȷ

“
1

t

„
ż t

0
Trgpxqdr

ȷ

,

Since r ÞÑ Trg is continuous on C0, the right hand side converges to 1
t

şt
0 Trgdr Ñ g and

Lf “ g. l

4.15.1 Diffusion operator an and Martingale problem

Let X “ pX1, . . . , Xmq be the dˆm-matrix with column vector given by the vector fields
X1, . . . , Xm, set A “ XXT . Writing A “ paijq, denote Lfpxq “ 1

2

řd
i,j“1 aijpxq

B2f
Bxixj

pxq `

dfpX0q. It is routine to require the solution, to the SDE ,to have continuous path or
has cadlág sample paths. In the former case, we would limit our solutions to the
space CpR`,X q of continuous paths, or to CpR`,X q where T ą 0. For any x, paijpxqq is
a non-negative symmetric matrix. Such an operator is referred as diffusion operator.

Definition 4.15.8 A continuous process x on Rd or its probability distribution, de-
noted by Pµ where µ “ LpX0q, is said to solve the local martingale problem for L,
if

Mf
t :“ fpxtq ´ fpx0q ´

ż t

0
Lfpxrqdr

is a local martingale (for the natural filtration of xt) for every f P C8
K .

We do not have time to work with the martingale problem in great depth, will simply
go over the important results for stochastic differential equations on Rn.

Definition 4.15.9 The local martingale problem for L is said to be unique if any two
solutions to the martingale problem, with the same initial distribution, have the same
probability law. It is said to be well posed if for any initial distribution there exists
exactly one solution.

The questions whether the martingale problem is well posed is a fundamental
question, which leads essentially to the strong Markov property. Being a martingale
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is a property of finite dimensional distributions. Indeed Mf
t is a martingale if and only

if for any 0 ď t1 ă t2 ă ¨ ¨ ¨ ă tn`1, and gi P BbpX q, the following holds:

E
”´

fpxtn`1q ´ fpxtnq ´

ż tn`1

tn

Lfpxrqdr
¯

Πn
i“1gipxtiq

ı

“ 0.

For the proof of the next theorem we need the following (local) martingale repre-
sentation theorem:

Theorem 4.15.10 (Integral representation) Let Mt be a continuous local martingale
with values in Rd, vanishing at time zero, with quadratic variation

xM i,M jyt “

m
ÿ

k“1

ż t

0
σikpsqσjkpsqds

where σik are progressively measurable stochastic processes. Then there exists a Brow-
nian motion Wt such that

M i
t “

m
ÿ

k“1

ż t

0
σikdW

k
s .

Proof If m “ d and if the matrix σ “ pσ1, . . . , σdq is invertible, we simply set Wt “
şt
0 σ

´1psqdMs. Otherwise, we let Π : Rm Ñ Rm and ΠK : Rm Ñ Rm denote respectively
the orthogonal projection from Rm to its subspaces kerpσq and rkerpσqsK, the kernel of
σ “ pσ1, . . . , σmq and its orthogonal kernel. Observe that the quadratic variation matrix
is xM,My “

şt
0pσpsqσT psqqds where σT denotes the transpose of σ. Let W̃t be a Brownian

motion on Rn, independent of Mt, and set

Wt “

ż t

0
σpsq´1ΠKdMs `

ż t

0
ΠsdW̃s.

Then Wt is a Brownian motion, as its quadratic variation is:

σ´1ΠpσσT qpσ´1ΠqT ` ΠKpΠKqT “ Idˆd.

In addition,

m
ÿ

k“1

ż t

0
σipsqdW i

s :“

ż t

0
σpsqdMs “

ż t

0
ΠKdMs `

ż t

0
σpsqΠsdMs “

ż t

0
ΠKdMs “ Ms.

We have used that
şt
0 σpsqΠK

s dW̃s “ 0. l

Exercise 4.15.11 If Mt is a martingale on Rm with quadratic variation
şt
0Apsqds and

σ : Rm Ñ Rd is a continuous and adapted process, show that Nt :“
şt
0 σpsqdBs has

quadratic variation
şt
0pσAσT qpsqds. Hint: Work with individually entries xN i, N jyt.
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Theorem 4.15.12 Let Xi be progressively measurable. Consider the canonical proba-
bility space CpR`,Rdq endowed with a probability measure P. Then the SDE has a weak
solution with distribution P if and only if P solve the local martingale problem for L. In
particular, if xt solve the local martingale problem for L, there exists a Brownian motion
Wt such that

xt “ x0 `

ż t

0
bpxsqds`

ż t

0
XkpxsqdW k

s .

Proof The ‘only if’ part is trivial and follows from Itô’s formula.

If P solve the local martingale problem for L, then we take f in be a sequence of
smooth functions with compact supports such that f inpxq “ xi for x P Bn and f in Ñ f .
By the assumption:

f inpxtq ´ f inpx0q ´

ż t

0
Lf inpxsqds

is a local martingale. Using stopping time and by the definition of local martingales
we see that

M i
t :“ xit ´ xi0 ´

ż t

0
bipxsqds

is a local martingale – observe that Lf “ dfpbq. By a similar consideration applied to
gijpxq “ xixj we see that

Mi,j :“ xitx
j
t ´ xi0x

j
0 ´

1

2

m
ÿ

k“1

ż t

0
σikpsqσjkpxsqds´

ż t

0
rxjsb

ipxsq ` xjsb
ipxsqsds,

is a local martingale. We have used the fact that Lpgijq “ 1
2

řm
k“1 σ

i
kσ

j
k ` xjbi ` xibj.

Furthermore,
xM i,M jyt “ xxi, xjyt.

On one hand, by Itô’s formula:

xitx
j
t “ xi0x

j
0 `

ż t

0
xisdx

j
s `

ż t

0
xjsdx

i
s ` xxi, xjyt

“ xi0x
j
0 `

ż t

0
xisdM

j
s `

ż t

0
xjsdM

i
s ` xxi, xjyt `

ż t

0
pxisb

jpxsq ` xjsb
ipxsqqds.

Consequently,

Mij “

ż t

0
xisdM

j
s `

ż t

0
xjsdM

i
s ` xM i,M jyt ´

1

2

m
ÿ

k“1

ż t

0
σikpsqσjkpxsqds.

Since Mij and the first two terms on the right hand side are martingales, by the
uniqueness of semi-martingale decomposition, it is necessary that

xM i,M jyt “
1

2

m
ÿ

k“1

ż t

0
σikpsqσjkpxsqds.
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There exists a Brownian motion Wt such that

M i
t “

ż t

0
Xi

kpxsqdW k
s .

Consequently,

xit “ xi0 `

ż t

0
bipxsqds`

ż t

0
Xi

kpxsqdW k
s ,

proving that xt is the solution to the SDE driven by Wt. l

The following theorem illustrates that uniqueness implies Markovian property.

Theorem 4.15.13 [3, 174] Let L : BbpX q Ñ BbpX q be a linear operator. Suppose that for
each probability measure µ on X , any two solutions X,Y of the martingale problem for
pL, µq satisfy that for any t ą 0,

PpXt P Aq “ PpYt P Aq, @A P BpX q.

Then, any solution of the martingale problem (MP) for L with respect to a filtration Gt

is Markov process with respect to Gt. Furthermore uniqueness holds for the martingale
problem for L.

Proof Let pXtq be a solution of the martingale problem (MP), on a probability space
pΩ,F ,Pq, for L with respect to a filtration Gt. Then for any f, gk P BbpX q and for any
r ě 0, 0 ď t1 ă t2 ă ¨ ¨ ¨ ă tn ă tn`1,

E
”´

fpXr`tn`1q ´ fpXr`tnq ´

ż tn`1

tn

fpXr`sqds
¯ ˇ

ˇ

ˇ
Gr

ı

“ 0. (4.9)

We show that for any t ě 0, r ě 0, and f P BbpX q,

ErfpXt`rq|Grs “ ErfpXt`rq|Xrs.

Equivalently, we show that for any Γ P Gr,
ż

Γ
fpXt`rqdP “

ż

Γ
ErfpXt`rq|XrsdP. (4.10)

Assume that PpΓq ą 0, let us define two probability measures on pΩ,Fq as follows:

P1pBq “
PpΓ XBq

P pΓq
“

ş

Γ Er1B|GrsdP
P pΓq

, P1pBq “

ş

Γ Er1B|XrsdP
P pΓq

.

Then,
ż

Γ
fpXt`rqdP “

1

PpΓq

ż

Ω
fpXt`rqdP1

ż

Γ
ErfpXt`rq|XrsdP “

1

PpΓq

ż

Ω
fpXt`rqdP2.
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Let Yt “ Xt`r, the required identity, (4.10), can be written as
ż

Ω
fpYtqdP2 “

ż

Ω
fpYtqdP1,

which follows from the uniqueness assumption on the marginal distributions, if we
can show that Yt solves the MP for L on pΩ,F ,P1q and on pΩ,F ,P2q. Note that

ż

Γ

´

fpXr`tn`1q ´ fpXr`tnq ´

ż tn`1

tn

fpXr`sqds
¯

dP2

“ PpΓq

ż

Γ
E
´

fpXr`tn`1q ´ fpXr`tnq ´

ż tn`1

tn

fpXr`sqds
ˇ

ˇ

ˇ
Xr

¯

dP

“ PpΓq

ż

Γ
E
”

E
´

fpXr`tn`1q ´ fpXr`tnq ´

ż tn`1

tn

fpXr`sqds
ˇ

ˇ

ˇ
Gr

ı ˇ

ˇ

ˇ
Xr

¯

dP “ 0,

showing that Yt solves the MP for L on pΩ,F ,P2q, similarly on pΩ,F ,P1q. l

The following is proved in Theorem 5.1.20.

Theorem 4.15.14 Let XTX and X0 be bounded and continuous. Then for any initial
probability distribution there exists a martingale solution for L, on CpR`q. If the local
martingale problem for δx has a unique solution, then there is a unique solution for any
initial distribution. Well-posedness of the local martingale problem for L implies that the
solution is a Markov process.

See [?, pp 295, Corollary 3.4] and [?, pp.419, Thm. 21.9, Thm 21.10 om pp 420].

The following theorem is similar to [3, pp 234, Theorem 8.10].

Theorem 4.15.15 Let Xi be continuous, consider the SDE driven by pXiq. Suppose that
weak uniqueness holds and that the solution is global. Suppose that the CpR`,X q local
martingale problem for pL, µq has at most one solution. Suppose that xn is a sequence of
adapted stochastic processes with sample paths in CpR`;X q, and is relatively compact,
with Lpxnp0qq Ñ µ, a probability measure. Let M Ă BC be a measure separating set.
Suppose that for each f P C8

K ,

lim sup
nÑ8

Er
`

fpxnptqq ´ fpxnpsqq ´

ż t

s
Lfpxuqdu

˘

Πk
i“1hipxtiqs “ 0

for all hi P M , 0 ď t1 ă t2 ă . . . tk ď s ă t. Then there exists a solution x to the martingale
problem for pL, µq, and the distributions of xn converge to that of x (weakly).

Proof Since xn is relatively compact we only need to identify its accumulation points.
Assume that xn Ñ x. Then by taking n Ñ 8 we see that

Er
`

fpxptqq ´ fpxpsqq ´

ż t

s
Lfpxuqdu

˘

Πk
i“1hipxtiqs “ 0,
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and fpxtq ´ fpxsq ´
şt
s Lfpxuqdu is a martingale. Consequently xt solves the martingale

problem for L. By weak uniqueness, it is a Martingale with generator L. l

4.16 Ellipticity

The operator L is elliptic if for any x and any ξ P Rn,

n
ÿ

i,j“1

ai,jpxqξiξj ą 0.

It is strictly elliptic if there exists c ą 0 for any x and any ξ P Rn, such that

n
ÿ

i,j“1

ai,jpxqξiξj ą c|ξ|2.

For some authors, strictly ellipticity includes also an upper bound. Observe that π
being an invariant measure is equivalent to L˚π “ 0 in the distributional sense. If
π ăă dx, then π “ gdx and

ş

Rn Lfgdx “ 0 for some Borel measurable function g for
f P DompLq. It is natural to work with L2pdxq, in terms of the L2 adjoint operator

ż

fL˚gdx “ 0.

For elliptic operators, π has a (smooth ) density with respect to dx. An operator
with smooth coefficients and satisfying Hörmander’s bracket conditions has a smooth
density.

Note that

L˚g “
1

2

n
ÿ

i,j“1

B2

BxiBxj
pai,jgq ´

ÿ

l

B

Bxl
pblgq

is the sum of a diffusion operator and a zero order term V g where

V “
1

2

n
ÿ

i,j“1

B2ai,j
BxiBxj

´

n
ÿ

l“1

Bbl
Bxl

.

Example 4.16.1 The Brownian motion on Rn has no finite invariant probability mea-
sure. Its only invariant measure is dx. It has no non-constant harmonic functions.

Example 4.16.2 The Ornstein-Uhlenbeck process has a unique invariant probability
measure.
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We write Lb g “
ř

l
B

Bxl
pblgq, the Lie derivative of g in the direction of b.

Exercise 4.16.3 Let b : Rn Ñ Rn and V : Rn Ñ R are smooth.

L “
1

2
∆ ` Lb ` L∇V .

Suppose that div
`

b e´2V
˘

“ 0. Show that e´2V dx is an invariant measure.

Definition 4.16.4 A diffusion process is a continuous strong Markov process.

4.17 Appendix: Resolvent Operator*

Having seen that a strongly continuous semi-group Tt on a Banach space E is de-
termined by its generator L (which is always densely defined and closed), we define
the resolvent operator pRλ, λ ě 0q of the semi-group and show that it is the inverse to
λ´ L.

Definition 4.17.1 For any λ ą 0, we define Rλ : E Ñ E by

Rλx “

ż 8

0
e´λsTsxds, @x P E.

This is an improper integral using the strong continuity of Ts and that
ż 8

0
e´λs|Tsx|ds ď |x|

ż 8

0
e´λsds ă 8.

This also shows give the norm bound: }Rλ} ď 1
λ .

Proposition 4.17.2 If Tt is a strongly continuous contraction semi-group E, then Rλ is
a strongly continuous contraction resolvent on E.

Proof We have seen already |λRλ} ď 1, we next show the continuity:

|λRλx´ x| “
ˇ

ˇ

ż 8

0
λe´λsTsxds´

ż 8

0
e´sxds

ˇ

ˇ “

ż 8

0
e´u

ˇ

ˇTu{λx´ x
ˇ

ˇdu,

passing limit inside the integral by the contraction property of Tt and dominated con-
vergence. Finally let τλ, τµ be independent exponentially distributed random variables
on R with parameter λ ą 0, µ ą 0 respectively. Then, ETτλx “

ş8

0 Tsxλe
´λds “ λRλx and

ETτλTτµx “ λµRλRµ.
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Now τ1 ` τ2 is distributed as
λµ

λ´ µ
pe´λs ´ e´µsqds.

Using the semigroup property,

λµ

λ´ µ
pRλ ´Rµq “ λµRλRµ

proving the resolvent equation Rλ ´Rµ “ pλ´ µqRλRµ. l

Example 4.17.3 If Ttfpxq “
ş

X fpyqPtpx, dyq on BbpX q be given by a transition function.
Then

Rλfpxq “

ż 8

0
e´λtfpxqdt.

Observe that 0 ď f ď 1 implies that 0 ď Rλf ď 1. Also the conservative property Tt1 “ 1

is equivalent to Rλ1 “ 1
λ .

Proposition 4.17.4 Let Tt a strongly continuous contraction semi-group E with gener-
ator L, then the following statements hold for any λ ą 0.

1. For any x P E, Rλx P DpLq;

2. For any x P DpLq, LRλx “ RλLx.

3. Any number λ ą 0 belongs to the resolvent set ϱpLq and Rλ “ pλ ´ Lq´1. Conse-
quently,

}pλ´ Lq´1} ď
1

λ
.

Proof (1) Let λ ą 0, and x PE, by the contractive property,

}Rλx} “

›

›

›

›

ż 8

0
e´λtTtx dt

›

›

›

›

ď

ż 8

0
e´λt dt }x} ď

1

λ
}x}, (4.11)

hence Rλx is well defined. For any h ą 0,

Th ´ I

h
Rλx “

1

h

ż 8

0
e´λtpThTtx´ Ttxqdt

“
1

h

ż 8

h
e´λpt´hqTtxdt´

1

h

ż 8

0
e´λtTtxdt

“
eλh ´ 1

h

ż 8

0
e´λtTtxdt´

1

h

ż h

0
e´λtTtxdt

phÑ0q
ÝÑ λRλ x´ x.
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Hence Rλx P DpLq and
LpRλxq “ λRλ x´ x, (4.12)

proving
pλ´ LqRλ “ IE .

So, λ´ L is injective on DpLq, and Rλ is the right inverse.

For x P DpLq,

RλpLxq
definition

“ lim
sÑ8

ż s

0
e´λtTtpLxq dt

“ lim
sÑ8

ż s

0
Lpe´λtTtxq dt “ lim

sÑ8
L
`

Rs
λ

hkkkkkkkkikkkkkkkkj

ż s

0
Ttpe

´λtxq dt
¯

.

We used part (i) of Theorem 4.14.1. Since

Rs
λ Ñ Rλx, LpRs

λq Ñ RλLx,

and L is closed by Theorem 4.14.1, LpRs
λq Ñ LRλ, concluding

RλLx “ LRλx, Rλpλ´ Lq “ IDpLq,

the latter follows from (4.12). Thus, Rangepλ´ Lq “ E, and pλ´ Lq´1 “ Rλ. l

If λ is a complex number with strictly positive real part, Rλ is well defined, which
allows to conclude that ϱpLq is contained in the open right half of the complex plane.
Strictly speaking, for this we should complexify the Banach space and extend the
operator to the complexification by L̃px` iyq “ Lx` iLy. Note that λ´L being injective,
surjective, invertible, as well as its boundedness are the same for L and L̃. With this
set up, the proof above leads to:

Corollary 4.17.5 Let L be the generator of a strongly continuous contraction semigroup
on E. Then ϱpLq Ą tλ : Repλq ą 0u, for such λ,

}pλ´ Lq´1} ď
1

Repλq
.

Example 4.17.6 Let E “ tf : R` Ñ R` : bounded and uniformly continuousu, then
Ttfpxq “ fpx ` tq defines a strongly continuous contraction semi-group on E. If λ “

´a` bi with a ă 0, then fptq “ eλt P E and in DpLq. Now, Ttf “ eλtf and Lf “ λf , so the
resolvent set ϱpLq is the right half of the plane.
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4.17.1 M-Dissipative operators

In this section we show the Hille-Yosida theorem: a closed and densely defined linear
operator L on a Banach space E is the generator of a strongly continuous contraction
semigroup on E if and only if it is M-dissipative.

If A is a symmetric matrix and λ is in its resolvent set, then one expects that

}pλ´Aq´1} ď
1

dpλ, SpepAqq
.

For an unbounded operator, we do not expect this to hold. We make an assumption
of this nature.

Definition 4.17.7 Consider a linear operator A : DpAq Ă E Ñ E.

• A is said to be dissipative if

}pλ´Aqx} ě λ}x} @x P DpAq, @λ ą 0.

• A is said to be M-dissipative (maximal dissipative) if for any λ ą 0, λ ´ A has an
inverse and

}pλ´Aq´1} ď
1

λ
. (4.13)

If A is M-dissipative, it is clearly dissipative. Indeed,

}pλ´Aq´1x} ď
1

λ
}x}, @x P E, @λ ą 0,

For any g P DpAq, simply replace x in the M-dissipative inequality with pλ´Aqg.

Exercise 4.17.8 Suppose that A is closed and pλ ´ Aq is invertible any λ ą 0. Show
that A is dissipative if and only if A is M-dissipative.

Let E be a Hilbert space, and A : E Ñ E a densely defined linear operator. Its
adjoint operator is defined on the set of x such that there exists an element of E
which we denote by A˚x with

xA˚x, yy “ xx,Ayy, @ y P DompAq.

We say A is self-adjoint if A˚ “ A. If A is a self-adjoint operator on a Hilbert space,
being dissipative means xAx, xy ď 0. This agrees with our intuition that A is sort of a
generalisation of a symmetric negative definite matrix (A self-adjoint operator is called
negative definite if xx,Axy ď 0 for any x P DompAq). The following theorem holds, [?]:
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Theorem 4.17.9 Let A be closed and densely defined. Suppose that both A and its
dual A˚ dissipative, then A is the generator of a strongly continuous semi-group.

We recall that the generator of a strongly continuous semigroup is dense. Anyhow,
if it is not dense we could think of getting ride of the superfluous parts.

Recall that ϱpLq “ tλ P C : pλ ´ Lq : E Ñ E is bijectionu. If λ P ϱpLq we denote
Rλ “ pλ´ Lq´1 its inverse. Then LRλ “ λRλ ´ id. M-dissipative means }Rλ} ď 1

λ .

Lemma 4.17.10 Let L : E Ñ E be a M-dissipative, closed, and densely defined opera-
tor. Then,

lim
λÑ8

λRλ x “ x, @x P E.

Consequently, for every x P DpLq,

Lx “ lim
λÑ8

λLRλ x.

Proof Let x P DpLq and denote Rλ “ pλ´ Lq´1. We have:

}λRλx´ x} “ }λRλx´Rλpλ´ Lqx} “ }RλLx} ď
1

λ
}Lx} Ñ 0,

we used the M-dissipative condition }λRλ} ď 1. Since DpLq is dense, this holds for all
x P E. l Let us write Rλ “ pλ´ Lq´1, then

Lλ :“ λLRλ “ λpλRλ ´ idq “ λ2Rλ ´ λ.

Definition 4.17.11 Lλ is said to be the Yosida approximation for L.

Lemma 4.17.12 Let L be a densely defined closed M-dissipative operator. Then Lλ is
the generator of a uniformly continuous semigroup of contractions which we denote by
T λ
t . Furthermore,

}T λ
t x´ Tµ

t x} ď t}Lλx´ Lµx}, @λ, µ ě 0.

Proof Since }Lλ} ď 2λ, Lλ is a bounded operator and Tt “ etLλ is a uniformly contin-
uous semi-group. Furthermore,

}etLλ} “ }etpλ
2Rλ´λq} “ e´λt etλ

2|Rλ| ď 1.

Also,

}etLλx´ etLµx} “

›

›

›

›

ż 1

0

d

ds
estLλ`p1´sqtLµxds

›

›

›

›

“

›

›

›

›

ż 1

0
tpLλ ´ LµqestLλ`p1´sqtLµx ds

›

›

›

›

ď t}Lλx´ Lµx}.



4.17. APPENDIX: RESOLVENT OPERATOR* 112

l

Theorem 4.17.13 (Hille-Yosida theorem) A linear operator L on a Banach space E

is the generator of a strongly continuous contraction semigroup on E if and only if the
following statements hold.

1. L is closed and densely defined.

2. L is M-dissipative.

Proof ùñ The only if part follows from Proposition 4.15.1 and Theorem 4.14.1.

ðù Suppose that L is closed, densely defined, and M-dissipative. Then ro x P DpLq,

}Lλx´ Lµx} “ }λLRλx´ µLRµx} ď }λLRλx´ Lx} ` }µLRµx´ Lx}

ď p
1

λ
`

1

µ
q}Lx}.

By Lemma 4.17.12,

}T λ
t x´ Tµ

t x} ď tp
1

λ
`

1

µ
q}Lx}, @λ, µ ě 0.

So T λ
t x converges as λ Ñ 8 uniformly in t on finite intervals. Set,

Ttx “ lim
λÑ8

T λ
t x.

Then t ÞÑ Ttx is continuous as uniform limit. Similarly, }Tt} ď 1, and T0x “ x. TtpTsxq “

limλÑ8 etLλpTsxq. Since etLλ is a contradiction, we can approximate Tsf by esLλ, which
gives limλÑ8 etLλpesLλxq “ Tt`sx.

Finally let A denote its generator. Let x P DpLq. Then,

1

t
pTtx´ xq “

1

t
lim
λÑ8

pT λ
t x´ xq “

1

t
lim
λÑ8

ż t

0

d

ds
T λ
s x ds

“
1

t
lim
λÑ8

ż t

0
LλT

λ
s x ds “

1

t
lim
λÑ8

ż t

0
T λ
s Lλx ds “

1

t

ż t

0
TsLxds Ñ Lx.

Hence x P DpAq, on which L “ A. Note that DpLq Ă DpAq.

By Theorem 4.15.1, any positive number λ P ϱpAq, pλ´ Aq is a bijection, and

pλ´ AqpDpAqq “ E.

By the M-dissipative property, so is pλ ´ Lq´1, pλ ´ LqpDpLqq “ E. In particular, since
L “ A on DpLq Ă DpAq,

pλ´ AqpDpLqq “ E.

As λ´ A is injective, the two domains have to be the same. l
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Corollary 4.17.14 A closed densely defined linear operator L on E is the generator of
a strongly continuous contraction semigroup on E if and only if it is M-dissipative.

Reference: [?, ?].

Corollary 4.17.15 If Tt is a symmetric strongly continuous contraction semigroup on
E, then there exists a self-adjoint operator A bounded from below s.t. Tt “ e´tA.

Proof The generator L of Tt is closed and densely defined, and the resolvent ϱpLq Ą

p0,8q. Also,

xLf, gy “

B

lim
tÑ0

Ttf ´ f

t
, g

F

“ lim
tÑ0

B

f,
Ttg ´ g

t

F

,

hence L is symmetric. The spectrum of a closed positive symmetric operator are: the
upper half complex plane, the lower half, the whole space, or a subset of R. Hence
σpLq Ă r0,8q which means the range of pL˘ iq is E which implies that L is self-adjoint.
That σpLq Ă p´8, 0s, which implies L is bounded from above. The two semi-groups,
with the same generator must agree: Tt “ etL. l

4.17.2 The dual space of C0pX q

Let us now return to make connections with Markov processes (on a locally compact
space). The reason that we can even hope to construct a Markov transition func-
tion from a semigroup of linear operators in the first place is Riesz’s representation
theorem which we recall below.

Definition 4.17.16 Let E be a vector space of functions with values in K (where
K “ R or C). A linear functional ℓ on E is a linear map ℓ : E Ñ K. A positive linear
functional ℓ : E Ñ R is a linear functional such that ℓpfq ě 0 whenever f P E is a
function with f ě 0 pointwise.

Let E be a normed vector space, its dual space is the set of all bounded linear
functionals on E and is denoted by E1. The dual space E1 of a normed vector space
with the operator norm is always a Banach space. The dual space contains linear
functionals of the form ℓpx0q “ }x0} and }ℓ} “ 1 (use Hahn-Banach Theorem). Then
}x} “ supt

|ℓpxq|

}ℓ} : ℓ P E˚, ℓ ­“ 0u. The dual E1 is large enough to separate points in E (for
any x ­“ y in E, there exists ℓ P E1 with ℓpxq ­“ ℓpyq).

Definition 4.17.17 1. A sequence xn in a normed space E is said to convergent
(strongly convergent) if }xn ´ x} Ñ 0 for some x P E.
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2. A sequence xn in a normed space E is said to weakly convergent if there exists
x P E such that ℓpxnq Ñ ℓpxq for every ℓ P E1.

Given a function space E, it is interesting to know what is its dual space. A
desirable property for functions space E is that E1 consists of measures on E. In case
E1 consists of measures then the weak convergence of fn P E to f in E means:

ż

E
fndµ Ñ

ż

E
fdµ,

for every µ P E1. This is a very useful concept. If fn Ñ f then }fn} is in fact bounded.
Indeed, for every µ P E1, the convergent real sequence µpfnq :“

ş

E fndµ is bounded.
From this the boundedness of the norm follows from the uniform boundedness prin-
ciple. A measure is said to have finite total variation if |µ|pEq “ sup8

j“1

ř

|νpEjq| where
E “ YjEj is a partition of E.

Theorem 4.17.18 (Riesz-Markov) Let X be a locally compact metric space. Then the
dual of the C0pX q is the space of signed Borel measures on X with finite total variation.
In particular, if ℓ : C0pX q Ñ R is a positive linear functional, then there exists a unique
Borel measure µ on X with finite total variation such that

ℓpfq “

ż

X
fdµ @f P C0pX q.

This is originally obtained for X compact, the measure is constructed by:

ϱpOq “ suptℓpfq : f P CpXq, 0 ď f ď 1, supppfq Ă Ou,

µ˚pEq “ inftϱpOq : E Ă O,O is openu.

See e.g. [?] for a proof in the compact case.

Note. References for this section are: [?, ?, ?]

4.17.3 The C0-property

We are specially interested in a Markov process with a Markov transition function P ,
in which case

Ttfpxq “

ż

X
fpxqPtpx, dyq “ ExrfpXtqs,

defines a Markov transition semigroup on BbpX q. There is, a priori, no regularity of
the mapping t ÞÑ Tt (strong continuity). It turns out that most Markov transition
semigroups are not strongly continuous on BbpX q. It is however this regularity which
allows us to encode the semigroup in terms of a generator by means of the Hille-Yosida
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theorem. This can be remedied by restricting the semigroup to a smaller space. We
therefore define

E :“ tf P BbpX q : lim
tÑ0

}Ttf ´ f}8 “ 0u.

This is the maximal subspace on which pTtqtě0 is strongly continuous. An ε{3-argument
shows that E is a Banach space and, clearly, TtpEq Ă E.

One way to ensure the existence of the transition function is to exploit theo-
rem 4.17.20 and to develop a theory for Markov semigroups pTtq which leave C0pX q

invariant. This leads to the so-called Feller-Dynkin processes. Another possible res-
olution of the dilemma is via Lp-space, provided we have a guess for the invariant
measure and work on an L2 space, see section 6.1 below.

We state the following theorem without proof, which can be proved similarly to the
proof that a super-martingale has a cádlág version. The interested reader may refer
to [17, Thm 2.7, pp91], [10], [18, Section III.7].

Theorem 4.17.19 If pXtq is a Markov process with transition semigroup pTtq, which is
strongly continuous on C0pX q, then there exists a càdlàg modification of pXtq, which is
a pF`

t q-Markov process with the same transition semigroup.

Corollary 4.17.20 If X is locally compact and Tt : C0pX q Ñ C0pX q, t ě 0, is a positive
preserving contraction semigroup and also defined on 1 with Tt1 “ 1, then there exists
a transition function Ptpx, dyq on X such that

Ttfpxq “

ż

X
fpyqPtpx, dyq @f P C0pX q. (4.14)

Furthermore for any A P BpX q, x ÞÑ Ptpx,Aq is measurable.

Proof Then for each x P X and t ą 0, we have a probability measure Ptpx, dyq, which
is dual to the bounded positive linear map f P CpX q ÞÑ Ttfpxq P R we define a linear
functional by f ÞÑ Ttf . Note that |Ttfpxq|8 ď |f |8. The measurability of x ÞÑ Ptpx,Aq for
any A P BpX q follows by a simple monotone class argument. By Theorem 4.17.19 the
Markov process has a cádág version, hence ÞÑ Ptpx,Aq is measurable and has at most
a countable number of jumps. The joint measurability of pt, xq ÞÑ Ptpx,Aq follows. l

Exercise 4.17.21 Write down a Markov process for which E ‰ BbpX q.

We say that X defines a Feller process if Tt
`

BCpX q
˘

Ă BCpX q for all t ě 0.

Exercise 4.17.22 Show that X is Feller if and only if, for all t ě 0, x ÞÑ Ptpx, ¨q is
continuous as a map X Ñ PpX q if the latter is equipped with the topology of weak
convergence.
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The terminology is not uniform across different textbooks. Sometimes authors call X
Feller if X is locally compact and Tt

`

C0pX q
˘

Ă C0pX q where

C0pX q :“ tf P CpX q : @ε ą 0 DK Ă X compact : |fpxq| ď ε@x P X zKu.

For distinction we speak in this latter case of a Feller-Dynkin process. It is clear that
this approach is problematic for infinite-dimensional X . In fact, let X be an infinite-
dimensional normed space, then C0pX q “ t0u. Nonetheless, we have the following
result, see e.g. [17, Prop 2.4, pp89]:

Lemma 4.17.23 Let pTtq be the Markov transition semigroup of a right continuous
Markov process with Tt

`

C0pX q
˘

Ă C0pX q. Then pTtq is strongly continuous on C0pX q.

(It is sufficient to replace the right continuity of Xt by limtÓ0 Ptfpxq Ñ fpxq for any c

and any f P C0pX q.)

Proof For α ą 0, let Rαf :“
şt
0 e

´αsTsgpxq ds. Let f “ Rαg for some g P C0pX q. Then

Ttfpxq “ eαt
ż 8

t
e´αsTsgpxq ds “ eαtfpxq ´ eαt

ż t

0
e´αsTsgpxq ds @x P X ,

whence

}Ttf ´ f}8 ď
`

eαt ´ 1
˘

}f}8 ` eαt
ż t

0
}Tsg}8 ds Ñ 0

as t Ñ 0. Consequently, pTtq is strongly continuous on Rα

`

C0pX q
˘

.

We then show that RαpC0pX qq is dense in C0pX q. If not, since C0pX q˚ separate
points and as a consequence of the Hahn-Banach and Riesz-Markov theorems, there
is a finite, non-zero (signed) measure µ on X such that

ż

X
Rαg dµ “ 0 @g P C0pX q.

It follows by the (first) resolvent identity

Rβ “ Rα ´ pβ ´ αqRαRβ, @α, β ą 0, (4.15)

we have
ż

X
Rβg dµ “ 0 @g P C0pX q, β ą 0.

But this contradicts the fact that, since Ttgpxq “ ExrgpXtqs Ñ gpxq by right-continuity
of Xt, βRβgpxq Ñ gpxq for any x P X as β Ñ 8. In fact, then by dominated convergence

0 “ lim
βÑ8

β

ż

X
Rβg dµ “

ż

X
g dµ, @g P C0pX q,

i.e., µ ” 0, contracting the assumption that RαpC0pX qq is not dense. l
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4.17.4 Strong Markov Property

For some purposes the natural filtration of a Markov process may be too small, e.g.,
the hitting times of open sets by Brownian motion are no stopping times with respect
to the natural filtration. For a given filtration pFtq, we let F`

t :“
Ş

rątFr denote its
right-continuous version.

Proposition 4.17.24 Let pXtq be a Markov process with right-continuous sample paths.
If its transition semigroup pTtq leaves BCpX q or C0pX q-invariant, then pXtq is an pF`

t q-
Markov process.

Proof Let 0 ď s ă t and ε ą 0. For f P BCpX q, we have that

E
“

fpXt`s`εq |F`
s

‰

“ E
“

ErfpXt`s`εq |Fs`εs |F`
s

‰

“ E
“

TtfpXs`εq |F`
s

‰

.

By right-continuity and bounded convergence, we can take ε Ñ 0 to conclude

E
“

fpXt`sq |F`
s

‰

“ E
“

TtfpXsq |F`
s

‰

“ TtfpXsq.

for bounded continuous test functions f : X Ñ R. To see that this in fact holds for
any bounded measurable f , we fix A P F`

s and define the measures

µApBq “ E
“

E
“

1BpXt`sq |F`
s

‰

1A
‰

, νApBq “ ErTt1BpXsq1As.

Both have the same total finite mass, and
ż

X
f dµ “

ż

X
f dν @f P C0pX q.

Since C0pX q is measure-determining class, µA “ νA, as required. l

Let τ be a stopping time and recall that

Fτ :“
␣

A P F : AX tτ ď tu P Ft @t ě 0
(

defines a σ-field. The following two lemmas are standard: With this one can show that

Lemma 4.17.25 If pXtq is adapted and right-continuous, then Xτ1τă8 P Fτ .

This follows from approximation of the stopping time as follows.

τn :“
8
ÿ

k“0

k ` 1

2n
1␣ k

2n
ďτă k`1

2n

( ` 81tτ“8u, n P N.

Then τn is a stopping time for each n P N and τn Ó τ a.s.

The next theorem shows that Feller processes are strong Markov:



4.17. APPENDIX: RESOLVENT OPERATOR* 118

Theorem 4.17.26 Let pXtq be a right-continuous Markov process whose transition func-
tion leaves either C0pX q or BCpX q invariant. Then it is strong Markov. If pXtq is cádlág
(respectively continuous) , the Markov process in the canonical picture is:

E
“

Φ ˝ θτ1tτă8u |Fτ

‰

“ 1tτă8uEXτ rΦs, (4.16)

where Φ is a bounded measurable function on D
`

r0, 1s,X
˘

(on the Wiener space).

Proof Let us first suppose that τ takes only a countable number of values ttk : k P Nu

with 0 ď t1 ă t2 ă ¨ ¨ ¨ ă ¨ ¨ ¨ ď 8. Then, using Theorem 3.4.14, we get for each B P Fτ ,

E
“

Φ ˝ θτ1tτă8u1B
‰

“

8
ÿ

k“1

E
“

Φ ˝ θtkq1tτ“tku1B
‰

“

n
ÿ

k“1

E
“

ErΦ ˝ θtk |Ftks1tτ“tku1B
‰

“

n
ÿ

k“1

E
”

EXtk
rΦs1tτ“tku1B

ı

“ E
“

EXτ rΦs1tτă8u1B
‰

.

Here we used the fact that B X tτ “ tu P Ft for each B P Fτ and t ě 0.

If f P Bb and ΦpXq “ fpXtq, this is:

E
“

fpXt`τ q1tτă8u|Fτ

‰

“ TtfpXτ q1tτă8u. (4.17)

Now assume a general τ , for the approximating sequence of theorem 3.5.3,

E
“

fpXt`τnq1tτnă8u|Fτ

‰

“ TtfpXτnq1tτnă8u.

By the right-continuity of X and the Feller property of Tt, for any f P BC (or f P C0pX q),
(4.17) holds by bounded convergence, for any f continuous and bounded. By the
standard method, this holds for bounded measurable f . It then remains to prove this
for functions of the form Πn

i“1fkpxtkq and thus for all bounded measurable functions.
For continuous paths, the analogous conclusion obviously holds. l

The strong Markov property states that the process restarts at any stopping afresh.

Example 4.17.27 Let us return to Example ??, consider the transition function

Qtpx, dyq “

#

Ptpx, dyq, if x ‰ 0,

δ0pdyq, if x “ 0,

where Ptpx, dyq “ ptpx, yq where ptpx, yq is the heat/Gaussian kernel. If x ­“ 0, we have
a Brownian motion, e.g. P pXt P Aq “

ş

A ptpx, dyq for any t ą 0. But when it hits zero
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(it does in finite time), it gets stuck at 0: from this stopping time, this is no longer a
Brownian motion. However, the Markov property would require that xt`τ to behave as
a Brownian motion starting from 0. More precisely, let τ “ inftą0txt “ 0u, then xτ`t “ 0

for all t.

Let us take a look from the definition of the strong Markov property. A realisation
of the Markov process from x is:

Xt :“

#

x`Wt, if X0 “ x ‰ 0,

0, if X0 “ 0,

for a one-dimensional Brownian motion pWtqtě0. Take Φpσq “ pσp1qq2. Suppose that
Xp0q “ 0, then EXτ pXp1qq2 “ 0, as Xptq “ 0 for all time t when Xp0q “ 0. On the other
hand,

EppX1`τ q2|Fτ q “ Eppx`W1`τ q2|Fτ q ­“ 0.

This Markov process is not Feller!! Let f be a continuous and bounded function,
then

Ptfp0q “ fp0q, Ptfpxq “

ż

R
fpyqptpx, yq dy.

For t ą 0, limxÑ0 Ptfpxq ­“ fp0q in general. Take for example fpyq “ y2.



Chapter 5

Weak convergence and solutions of
martingale problems

We have previously discussed weak convergence, Prohorov’s theorem, tightness. In
this set of lecture we cover weak convergence on the space of continuous processes,
touching on Cádlág processes.

In our next 2 lectures, we shall cover the following only: the Ascoli-Arzelá Theorem
for tightness (Theorem 5.1.9), Kolomgorov’s theorem for tightness (Theorem 5.1.15),
and an application an application to the existence of martingale solution (Theorem
5.1.20).

5.1 Weak convergence

A family of random variables / stochastic processes is said to converge weakly, other-
wise known as convergent in distribution, if their probability distributions converge.
To prove that a family of stochastic processes is weakly convergent, we follow two
steps:

(1) We demonstrate that the family of their probability measures forms a relatively
compact subset of a suitable function space; in our context, this is typically the
Wiener space.

(2) We show that all accumulation points of the family are identical, ensuring con-
vergence to a single limit in the distribution sense.

We emphasise the standing assumption that the state space X of the random

120
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variables under consideration is a complete, separable metric space, and BpX q is its
Borel σ-algebra. Recall that a subset of a topological space is relatively compact it its
closure is compact. A set is compact if every cover of the set by open set contains a
finite sub-cover. In a complete separable metric space, a set is relatively compact if
and only if it is sequentially compact, meaning that every sequence from the set has
a convergent subsequence in X .

Let PpX q denotes the set of probability measures on X .

Definition 5.1.1 Let Pn,P P PpX q. Suppose that for every bounded continuous func-
tion f : X Ñ R,

ż

X
fdPn Ñ

ż

X
fdP, (5.1)

we say that Pn converges weakly to P, denoted by Pn
pwq
Ñ P.

An equivalent criterion is that (5.1) holds for every bounded Lipschitz continuous
function. This is substantiated by the fact that for every closed set F Ă X ,

fϵpxq “ p1 ´
1

ϵ
dpx, F qq,

where dpx,Aq “ infyPA dpx, yq denote the distance from x to A, is a bounded Lipschitz
continuous function. Moreover, 1F ď fϵ ď 1F ϵ, where Fϵ “ tx : dpx, F q ď ϵu. Therefore,
(5.1) holding for all bounded continuous functions implies one of the equivalent state-
ments in the Portmanteau Theorem: lim supnÑ8 PnpF q ď PpF q for all closed sets F .

Weak convergence is preserved by continuous mappings.

Proposition 5.1.2 Let f : X Ñ X̃ be a continuous map between metric spaces. If
Pn, P P PpX q with Pn Ñ P, then the pushed forward measures satisfy: f˚Pn Ñ f ˚ P.

Exercise 5.1.3 Suppose that xn, yn, x are random variables on a probability space
pΩ,F ,Pq with values in a complete separable metric space pX , dq, and assume the
following conditions:

(1) xn Ñ x weakly.

(2) dpxn, ynq Ñ 0.

Prove that yn Ñ y weakly.

Hint: The weak convergence of xn Ñ x can be charecterised by the condition: lim supnÑ8 Ppxn P

F q ď Ppx P F q for any closed set F in X . Note that if you define Fϵ “ ty : dpy, F q ď ϵu as
the ϵ-expansion of F , it holds that Fϵ Ó F and

Ppyn P F q ď Ppxn P F ϵq ` Ppdpxn, ynq ą ϵq.
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5.1.1 Tightness

For probability measures, there is the concept of a probability measure being tight
and a family of probability measures being tight (uniformly tight).

Definition 5.1.4 A measure is tight if, for any ϵ ą 0, there exists a compact set K
such that PpKq ą 1 ´ ϵ. Similarly, a family of probability measures is tight if, for any
ϵ ą 0, there exists a compact set K such that PpKq ą 1 ´ ϵ for every measure P in the
family.

Any finite family of probability measures on a complete separable metric space is
tight.

Theorem 5.1.5 (Prohorov theorem) On a complete separable metric space, a set of
probability measures is tight iff it is relatively compact.

Corollary 5.1.6 If A “ tµϵ : ϵ P p0, 1su is a tight family of Borel probability measures on
X , and each weakly convergent sequence tPϵnu, where ϵ Ó 0, from A has a convergent
subsequence with limit µ, then µϵ Ñ µ weakly.

Proof Suppose that µϵ does not converge to µ weakly. Then, there exists a bounded
continuous function f : X Ñ R such that

ż

X
fdµϵ ´

ż

X
fdµ ­Ñ 0.

Consequently, for some ϵ ą 0, there exists an decreasing sequence ϵn with µϵn P A

such that
ˇ

ˇ

ˇ

ż

X
fdµϵn ´

ż

X
fdµ

ˇ

ˇ

ˇ
ą ϵ.

However, applying the tightness assumption, we find a sub-sequence µϵnk
such that

ş

X fdµϵnk
Ñ

ş

X fdµ. This results in a contradiction, as the inequality above would be
violated by the convergent subsequence. Hence, µϵ must converge weakly to µ. l

5.1.2 Tightness on the Wiener space

A reference for this section is Chapter 13, Revuz-Yor. We first study the weak con-
vergence of continuous stochastic processes to continuous stochastic processes. A
continuous stochastic process on Rd with time horizon r0, T s has trajectories in the
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Wiener space Cpr0, T s;Rdq, while the later with the supremum norm is a separable
Banach space. On CpR`;Rdq, we may define the metric:

dpω, ω1q “

8
ÿ

n“1

2´n suptďn |ωptq ´ ω1ptq|

1 ` suptďn |ωptq ´ ω1ptq|
.

We denote by I the time interval r0, T s or R` and W d the Wiener space on either.

Definition 5.1.7 • The finite dimensional distributions of a measure on the Wiener
space are the pushed forward measures: pπt1,...,tnq˚µ where n P N0, t1, . . . , tn P I

and
πt1,...,tn : ω P W d ÝÑ pωpt1q, . . . , ωptnqq P Rnd

are the multi-coordinate projections.

• The finite dimensional distributions of a continuous stochastic process pXt, t P

r0, T sq are that of its probability distribution on Cpr0, T s;Rdq.

• If for a sequence of stochastic processes pXnq, for every collection pt1, . . . , tnq,
pXn

t1 , . . . , X
n
tnq converges in law, the sequence of stochastic processes is said to

converge in finite dimensional distributions.

Furthermore, the collection of cylindrical sets of the form

tω : ωptiq P Ai, i “ 1, . . . , nu,

generates the Borel σ algebra. Here Ai P BpRdq and ti is in the time interval. This can
be verified with the fact that projections are continuous functions, the cylindrical set
is the pre-images of Πn

i“1Ai by πt1,...,tn is in the Borel σ-algebra. Conversely, any closed
ball is countable intersection of cylindrical sets:

tω̃ : |ω ´ ω̃|8 ď au “ tω̃ : |ωpqq ´ ω̃pqq| ď a,@q P Qu

where Q is the set of rational numbers and thus the Borel measurable sets are in
the σ-algebra generated by the cylindrical sets. Consequently, the measures on the
Wiener space are determined by their values on cylindrical sets, and therefore the
finite dimensional distributions of a stochastic process uniquely determines its prob-
ability distribution.

However if µn P PpCpr0, T s;Rdq, the convergence of the finite dimensional distribu-
tions of µn does not necessarily imply the weak convergence of µn. Take for example
µ “ δg, µn “ δgn where g ” 0 and gn are continuous piecewise linear determined by:
gnpxq “ 0, gnpTn q “ 1, and gnp2Tn q “ 0.
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T
n

2T
n

T

1

x

gnpxq

Then, µn Ñ µ in finite dimensional distributions on Cpr0, T s;Rdq. Specifically, for
any given pt1, . . . , tnq, where ti ą 0, δgpωptiq P Ai, i “ 1, . . . , nq takes the values t0, 1u, it is
1 only if 0 P XiAi. One can choose n sufficiently large so that 2T

n ě minpt1, . . . , tnq. For
such n, δgnpωptiq P Ai, i “ 1, . . . , nq “ 1 only if 0 P XiAi.

However, µn does not converge weakly. For instance, consider the bounded con-
tinuous function Φpfq “ minp|f |8, 1q on the Wiener space. In this case,

ż

Cpr0,T s;Rdq

Φpfqµpdfq “ Φpgq “ 0,

ż

Cpr0,T s;Rdq

Φpfqµnpdfq “ Φpgnq “ 1,

as |gn|8 “ 1.

To investigate tightness of measures on the Wiener space, we describe its relatively
compact sets. For δ ą 0, and for any function f P Cpr0, T s;Rdq, define its modulus of
continuity as follows:

Vδpfq “ sup
s,tPr0,T s:|t´s|ďδ

|fptq ´ fpsq|. (5.2)

A function : r0, T s Ñ Rd is uniformly continuous if and only if limδÑ0 Vδpfq “ 0.

Observe that δ ÞÑ Vδpfq is an increasing function. Moreover, since f is uniformly
continuous, limδÑ0 Vδpfq “ 0. Furthermore, |Vδpfq ´ Vδpgq| ď 2|f ´ g|8.

The following characterisation for relatively compact subsets follows from the Arzelá-
Ascoli Theorem:

Proposition 5.1.8 (Ascoli-Arzelá Theorem) A subset D of Cpr0, T s;Rdq is relatively
compact if and only if:

(1) supfPD |fp0q| ă 8;
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(2) Uniform continuity, uniformly over D, i.e.:

lim
δÑ0

sup
fPD

Vδpfq “ 0.

Passing to the tightness of measures, we present the following theorem. Recall
that π0 : Cpr0, T s;Rdq Ñ Rd denotes the projection π0pfq “ fp0q, and pπ0q˚µpAq “ µptω :

ωp0q P Auq denotes its pushed forward measure on Rd.

Theorem 5.1.9 (Ascoli-Arzelá Theorem for tightness) A family A Ă PpCpr0, T s;Rdq

is tight if and only if the following holds:

(1) The set of measures tpπ0q˚µ : µ P Au on Rd is tight.

(2) Vδ Ñ 0 in probability, uniformly over A, meaning that for any η ą 0,

lim
δÑ0

sup
µPA

µptVδpfq ě ηuq “ 0.

Proof Firstly assume that A is relatively compact, therefore it is tight by Prohorov’s
theorem. For any ϵ ą 0, there exists Kϵ compact with µpKϵq ě 1 ´ ϵ.

Since Kϵ is compact, according to Proposition 5.1.13, there exists Cϵ such that
|ωp0q| ď Cϵ for any µ P A, hence µpω : |ωp0q| ą Cϵq ď µpKc

ϵ q ă ϵ. Furthermore, for any
η ą 0, there exists δ such that Vδpfq ď η for all f P Kϵ, hence fro µ P A,

µpω : Vδpωq ě ηq ď µpKc
ϵ q ď ϵ,

proving (ii).

Conversely assuming (i) and (ii) holds. For any ϵ ą 0, we construct a relatively
compact subset Kϵ. Firstly there exists Cϵ ą 0, such that µp|ωp0q| ě Cϵq ă 1

2ϵ. Set
ACϵ “ tω : |ωp0q| ď Cϵq. For any η “ 1

m , there exists δm,ϵ such that

µpω : Vδϵ,mpωq ě
1

m
q ă 2´m`1ϵ.

Set
Kϵ,m “ tω : Vδϵ,mpωq ď

1

m
u

and
Kϵ “ ACϵ X pX8

m“1Kϵ,mq.

Then

µpKc
ϵ q ď PpACϵq `

m
ÿ

k“1

µpKϵ,mq ă ϵ
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On Kϵ, |ωp0q| ď Cϵ and for any η ą 0, choose k0 with 1
k0

ă η, for any δ ă δϵ,m,

lim
δÑ0

Vδpωq ď Vδϵ,mpωq ď
1

k0
ă η,

and limδÑ0 Vδpωq “ 0, so Kϵ is compact by Proposition 5.1.13.

If K is a compact set, then supωPK |ωp0q| ď C for some constant C and for any η

there exists δ0 such that
sup
ωPK

wδ0pωq ă η.

Since wδ increases with δ, the above holds for any δ̃ ą δ. Let us denote this set by
KC,δ,η.

If tPnu is relatively compact, hence tight then, for any ϵ ą 0, there exist C, η, η such
that PnpKC,δ,ηq ą 1 ´ ϵ. This proves the two conditions hold for any n ě 0.

If condition (i) and (ii) are satisfied by tPnuněn0, since tPnunďn0 is tight and satisfy
(i) and (ii) uniformly we may assume the conditions are satisfied for all n. l

Note that a family A Ă PpCpr0, T s;Rdq is relatively compact if and only every se-
quence from A is relatively compact.

Remark 5.1.10 The two conditions can be rephrased as follows:

(i) For any ϵ ą 0 there exists a number C ą 0, such that µp|ωp0q| ď Cq ě 1 ´ ϵ for any
µ P A.

(ii) For any ϵ ą 0 and η ą 0, there exist δ ą 0 such that for any µ P A,

µpω : Vδpωq ď ηq ě 1 ´ ϵ.

For (ii) it is sufficient to note that wδ decreases with δ so for any δ̃ ă δ,

µpω : Vδ̃pωq ď ηq ě µpω : Vδpωq ď ηq ě 1 ´ ϵ.

For a sequence A “ tPnu, (2) can be rephrased as: for any ϵ ą 0, η ą 0 there exists
n0 and δ such that for n ě n0,

Pnpω : Vδpωq ď ηq ě 1 ´ ϵ.

Exercise 5.1.11 let X , Y be complete separable metric spaces. Show that if A is tight
on X and f : X Ñ Y is continuous, then tf˚µ : µ P Au is tight.
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5.1.3 On Infinite Horizon Wiener Space

Remark 5.1.12 In the above consideration we have taken the time interval in the
Wiener space being r0, T s. If it is R`, we only need to consider the modulus of conti-
nuity up to each time r0, N s where N P N0.

To work with CpR`;Rdq, we take

V N
δ pfq “ sup

s,tPr0,Ns:|t´s|ďδ

|fptq ´ fpsq|.

Proposition 5.1.13 (Arzelá-Ascoli Theorem -II) A subset D of CpR`;Rdq is relatively
compact if and only if:

(1) supfPD |fp0q| ă 8;

(2) For any N ,
lim
δÑ0

sup
fPD

V N
δ pfq “ 0.

Theorem 5.1.14 A family A Ă PpCpr0, T s;Rdqq is tight if and only if the following holds:

(1) The set of measures tπ˚
0µ : µ P Au on Rd is tight.

(2) For every ϵ ą 0, η ą 0 and N P N, there exists a δ with

sup
µPA

µptV N
δ pfq ě ηuq ă ϵ.

The proof in the last theorem is as before except that we would take further in-
tersection in the construction of the relatively compact set: Let CN,ϵ and δN,ϵ,m be
numbers such that for all µ,

µp|ωp0q| ą CN,ϵq ď 2´N´1ϵ

and
µpδN,ϵ,mpωq ą

1

m
q ď 2´m´N´1ϵ.

Set
Kϵ “ XNt|ωp0q| ď CN,ϵ XKδN,ϵ,m

u.

Then Kϵ is compact and µpKc
ϵ q ď ϵ.
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5.1.4 Kolmogorov’s Theorem –tightness

Since the modulus of continuity |fpsq ´ fptq| ď sups ­“t
dpfpxq,fpyqq

|s´t|α |s´ t|α ď |f |α|s´ t|α, if
|f |α is uniformly bounded then the family is equi-continuous. The control the Hölder
norm of the stochastic process we use Kolmogorov’s theorem.

Theorem 5.1.15 [Kolmogorov’s Theorem for tightness] Let pXnq be a sequence of Rd-
valued continuous processes such that

(1) The family of initial laws LpXn
0 q is tight.

(2) There exists numbers p ą 1, β ą 0, α ą d
p such that αp ą d and for every s, t P r0, N s,

and every n,
}Xn

s ´Xn
t }p ď β|s´ t|α,

then the set of laws of tXnu is weakly relatively compact.

Proof We only need to show that for any ϵ ą 0 and η ą 0, there exist δ and an integrer
n0 such that for n ě n0,

PnptVδpωq ě ηuq ă ϵ.

Apply Markov-inequality for condition (2).

Pp sup
|s´t|ăδ

|Xn
s ´Xn

t | ě ηq ” PnptVδpXnq ě ηuq ď
1

ηp
E sup

|s´t|ăδ

|Xn
s ´Xn

t |p.

Recall Theorem 2.8.16 applied to pXn
t qtPr0,T s: If for some α ą 0, p ą 1, and C ą 0, the

following holds:
sup
s ­“t

}Xn
s ´Xn

t }p ď β|t´ s|α,

then for any γ ă α ´ d
p ,

›

›

›
sup
s ­“t

|Xn
s ´Xn

t |

|s´ t|γ

›

›

›

p
ď βC̃.

Hence limδÑ0 E sup|s´t|ăδ |Xn
s ´Xn

t |p “ 0, completing the proof. l

5.1.5 Applications

Definition 5.1.16 A sequence of continuous stochastic processes is said to converge
in distribution if their probability distributions on the Wiener space converge weakly.
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Lemma 5.1.17 Let fn, f : X Ñ Y be measurable maps on Banach spaces and such
that fnpxnq Ñ fpxq for any sequence xn in X converging to x. Then f is continuous and
fn converges to f locally uniformly.

Proof Suppose that f has a discontinuity at x, then there eixsts δ ą 0 and yn Ñ x

such that
|fpynq ´ fpxq| ě δ.

Let N0 “ 1, and since fnpykq Ñ fpykq

Nk “ inftN ě Nk´1 : |fnpykq ´ fpxq| ě
δ

2
,@n ě Nu ă 8.

Define xn “ yk if n P rNk, Nk`1q then xn Ñ x. But |fnpxnq ´ fpxq| ě δ
2 by the construc-

tion, contradicting with the assumption and proving that f must be a continuous
functions.

Suppose that fn does nto converge locally uniformlly. Then for any relatively com-
pact set K, there exists δ ą 0 and xn P K such that

|fnk
pxkq ´ fpxkq| ą δ.

Now xk has a convergent subsequence, which we denote by yk, with limit y. We have

|fnk
pykq ´ fpykq| ą δ.

Since f converges locally uniformlly, there exists N with |fpynq ´ fpyq| ă δ
2 for any

k ą N and
|fnk

pykq ´ fpyq| ą δ{2,

contradicts the assumption. We have showed therefore for any K compact , any δ

there exists N such tht |fnpxq ´ fpxq| ă δ for all x P K. l

The following is an extension of the continuous mapping theorem given in Theo-
rem 5.1.18.

Proposition 5.1.18 (Continuous Mapping Theorem) Let fn, f : X Ñ Y be measur-
able maps between metric spaces such that fnpxnq Ñ fpxq for any sequence xn in X
converging to x. If µn, µ P PpX q with µn Ñ µ, Then pfnq˚µn Ñ f˚µ. In partricular, if ξn
are random variables converging to ξ in distribution, then fnpξnq converges to fpξq in
distribution.

Proof Denote νn “ pfnq˚µn and ν “ f˚µ. By Portmanteau theorem it is sufficient to
show for any G Ă Y open,

lim inf
nÑ8

νnpGq ě νpGq.
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Fix such an open set G Ă Y. For any x P f´1pGq, there exists a neighbourhood U and
a number m such that for all k ě m, fkpUq Ă G. Consequently, x Ă X8

k“mpf´1
k pGqqo,

where the supersript denotes the interior of a set, in particular it is an open set. Thus,

f´1pGq Ă Y8
m“1 X8

k“m pf´1
k pGqqo.

Consequently,

f˚µpGq “ µpf´1pGqq ď sup
m

µpX8
k“mpf´1

k pGqqoq ď sup
m

lim inf
nÑ8

µnpX8
k“mpf´1

k pGqqoqq.

We have used µn Ñ µ. Finally we obtain,

f˚µpGq ď sup
m

lim inf
nÑ8

µnpX8
k“mpf´1

k pGqqoqq ď lim inf
nÑ8

µnpf´1
n pGqq “ lim inf

nÑ8
pfnq˚µnpGq,

which completes the proof. l

We reiterate the following theorem:

Theorem 5.1.19 Let Xn, X : Ω Ñ W d be measurable functions. Set Xn
t pωq “ Xnpωqptq,

Xtpωq “ Xpωqptq. Suppose that pXnq converges in finite dimensional distribution to pXq

and if
lim
δÑ0

lim sup
nÑ8

PpVδpXnq ě ϵq “ 0,

then the stochastic processes converge weakly to X on W d.

Proof Since Xn
0 Ñ X0 in distribution, tXn

0 , n P Nu is tight. Thus both conditions for
tightness hold. l

Let F0
t denote the σ-algebra on the Wiener space generated by the coordinate pro-

cess. Let ras denote the integer part of the number a. Denote by M`
d the set of

symmetric non-negative definite dˆ d matrices.

Theorem 5.1.20 Let Xi : Rd Ñ Rd, i “ 0, 1 . . . ,m, be bounded continuous, then for any
probability measure µ on Rd, there exists a solution to the martingale problem for L
where

Lfpxq “
1

2

d
ÿ

i,j“1

aijpxq
B2f

BxiBxj
pxq `

d
ÿ

k“1

bpxq
Bf

Bxk
pxq,

paijq “ XXT , and X “ pX1, . . . , Xmq.

Proof Consider the canonical probability space pΩ,F ,Pq and the standard filtration
from the coordinate process, on which we have a random variable X0 with distribution
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µ, and an independent Brownian motion B on Rd. We define an approximation for
dxt “ X0pxtqdt`

řm
k“1XipxtqdW

k
t as follows. Define for t P p0, ϵs:

xϵt “ x0 `

ż t

0
X0px0qds`

ÿ

k

ż t

0
Xkpx0qdW k

s

On pϵ, 2ϵs define,

xϵt “ xϵϵ `

ż t

ϵ
X0pxϵpϵqqds`

ÿ

k

ż t

0
XkpxϵpϵqqdW k

s ,

and iteratedly we defien xϵt for all t. For any ϵ ą 0 and any path γ P CpR`,Rdq, we
define: the time dependent vector fields Xϵ

i pt, γq as folllows:

Xϵ
i pt, γq “

8
ÿ

j“1

Xipγpjϵqq1pjϵ,pj`1qϵsptq.

Then xϵt solvs:

xϵt “ x0 `

ż t

0
Xϵ

0ps, xϵsq `

ż t

0
Xϵ

kps, xϵsqdW k
s .

Write

Lϵ
sfpxϵsq “

1

2

d
ÿ

i,j“1

aϵi,jps, x
ϵ
sq

B2f

BxiBxj
pxϵsq `

d
ÿ

k“1

bϵkps, xϵsq
Bf

Bxk
pxϵsq.

Denote by Pϵ the law of xϵ on the Wiener space, then

fpxϵtq ´ fpx0q ´

ż t

0
Lϵ
sfpxϵsqds

is a martingale.

Take ϵ “ 1
n , we change all indices from ϵ to n. We show that Pn is weakly relatively

compact. Firstly, condition (1) is satisfied. Condition (2) follows by BDG inequality.
For any n, and δ ą 0, s ě 0,

E sup
0ďrďδ

|xns ´ xns`r|p ď δ
p
2 .

For any p ą 1, we choose p ą d to obtain the tightness of Pn.

Then there exists a sequence xnk that converges weakly to some process x. For
simplicity we denote the sub-sequence by xn as well, and suppose that xn converges
weakly to a stochastic process x. We denote its distribution on W d by P.

Take a smooth and compactly supported function f , s ă t, and g : Cpr0, ss;Rdq Ñ R.
We want to show that

E
”´

fpxtq ´ fpxsq ´

ż t

s
Lsps, xrqdr

¯

gpxq

ı

“ 0.
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We already know that, for each n,

E
´

fpxnt q ´ fpxns q ´

ż t

s
Ln
s ps, xnr qdr

¯

gpxnq “ 0.

We invoke the continuous mapping theorem. Write:

Φpγq “

´

fpγtq ´ fpγsq ´

ż t

s
Lsps, γrqdr

¯

gpγq,

and

Φnpγnq :“
´

fpγnt q ´ fpγns q ´

ż t

s
Ln
s ps, γnr qdr

¯

gpγnq.

Note that for fixed time interval, If γn Ñ γ, Φnpγnq Ñ Φpγq. If xn Ñ x in W d in distribu-
tion, then Φnpxnq Ñ Φpxq in distribution, it follows from the boundedness of Φn, that
ErΦpxq “ limnÑ8 ErΦnpxnqs “ 0, so P solves the martingale problem. l

Remark 5.1.21 If we know the martingale problem has at most one solution, then
the limiting point would be unique, and this woulld be the weak limit of the processes
Xn (the weak limit does exist in this case).

Theorem 5.1.22 [Billingsley, pp.83] Suppose that 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tk “ 1 and

min
1ăiăk

pti ´ ti´1q ě δ.

Then for any f : r0, T s Ñ Rd,

Vf pδq ď 3 max
1ďiďk

sup
sPrti´1,tis

|fpsq ´ fpti´1q|

and for any probability measure P,

PpVf pδq ě 3ϵq ď

k
ÿ

i“1

Pp sup
sPrti´1,tis

|fpsq ´ fpti´1q| ě ϵq.

Proof Let M “ 3max1ďiďk supsPrti´1,tis
|xpsq ´ xpti´1q|. If |s ´ t| ă δ, then they either

belong to the same sub-interval rti, ti`1s, in which case

|xpsq ´ xptq| ď |xpsq ´ xptiq| ` |xptiq ´ xptq| ď 2M,

ot they lie in adjacent intervals, s P rti´1, tis and t P rti, ti`1s. In the latter case,

|xpsq ´ xptq| ď |xpsq ´ xpti´1q| ` |xptiq ´ ´xpti´1q| ` |xptiq ´ xptq| ď 3M,

showing Vf pδq ď 3M . Finally, Vf pδq ě 3ϵ implies that max1ďiďk supsPrti´1,tis
|xpsq ´

xpti´1q| ě ϵ, and the last inequality holds.

l
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Lemma 5.1.23 [16, pp 517, Lemma (1.7), Chapter 13]. Consider a sequence tPnu from
PpX q. Condition (2) of Theorem 5.1.14 is implied by the following condition:

For any N , ϵ, η ą 0 there exists a number δ P p0, 1q and n0 such that

1

δ
Pnptω : | sup

tďsďt`δ
|pωpsq ´ ωptq| ě ηuq ď ϵ,

for any n ě n0, and all t P r0, N s.

Proof Want to show that for every ϵ there exists a δ ą 0 such that

lim
δÑ0

lim sup
nÑ8

PnpVδpxq ě ϵq “ 0.

Let η ą 0, and ϵ ą 0, then there exists δ P p0, 1q, such that

1

δ
Pnp sup

sPrt,t`δs

|xpsq ´ xpti´1q| ě
ϵ

3
q ď

η

N
.

By the previous theorem, taking ti “ iδ, where i ă rN{δs.

PnpVδpfq ě ϵq ď

rN{δs
ÿ

i“1

Pnp sup
sPrti´1,tis

|xpsq ´ xpti´1 ^Nq| ě
ϵ

3
q ď r

N

δ
s
δ

N
η ď η,

asserting the statement. l

Given a sequence of mean zero identically distributed real valued random variables
ξn with variance σ2. Set

S0 “ 0, Sn “

n
ÿ

k“1

ξk.

Let Xnpωq be defined by fixing its values at i
n to be : Xnpωq “

Sipωq

σ
?
n

, and linear interpo-

lations between values at i
n . Namely Xnpωq is a continuous piecewise linear function

given by

Xn
0 “ 0, Xnptqpωq “

Srntspωq

σ
?
n

` pnt´ rntsq
ξrnts`1pωq

σ
?
n

, t P r
i

n
,

pi` 1q

n
s.

Lemma 5.1.24 [Billingsley, pp. 88] Suppose that tXnu is stationary, and

lim
λÑ8

lim sup
nÑ8

λ2Ppmax
kďn

|Sk| ě λσ
?
nq “ 0.

Then tXnu is tight.
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Proof We want to show that for any ϵ ą 0, there exists δ such that

lim sup
nÑ8

PpVδpXnq ě 3ϵq Ñ 0.

By the previous lemmas, Lemma 5.1.22, for a partition of r0, 1s, 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “

1, of size δ ą 0,
VXnpδq ď 3 max

1ďiďN
sup

sPrti´1,tis

|Xnpsq ´Xnpti´1q|.

Applying Lemma 5.1.22, and a brutal estimate of the supremum by the sum:

PpVδpXnq ě 3ϵq ď Pp max
1ďiďN

sup
sPrti´1,tis

|Xnpsq ´Xnpti´1q| ě ϵq

ď
ÿ

1ďiďN

Pp sup
sPrti´1,tis

|Xnpsq ´Xnpti´1q| ě ϵq.

By the definition, Xn is obtained by interpolation on sub-intervals of size 1
n . We

shall first take n Ñ 8, then take δ to infinity. Thus we may assume that 1
n is small.

Denote by m the maximal number of sub-intervals of size 1
n that fit into rti, ti`1s, then

m “ rδns so δ „ m
n .

If s P rti, ti`1s, where ti “ iδ „ im
n , suppose that s P rpmi ` kq{n, pmi ` k ` 1q{ns. Thus

Xnptiq „
Smipωq

σ
?
n

and Xs „“
Smi`kpωq

σ
?
n

, and we have

Xnpsq ´Xnptiq “
Smi`kpωq

σ
?
n

` pns´ im` kq
ξmi`k`1pωq

σ
?
n

´
Smipωq

σ
?
n

´ pnti ´ imq
ξmi`kpωq

σ
?
n

.

“
Smi`kpωq

σ
?
n

´
Smipωq

σ
?
n

`Ri,

where the error term Ri “ pns ´ im ` kq
ξmi`k`1pωq

σ
?
n

´ pnti ´ imq
ξmi`kpωq

σ
?
n

has mean zero

variance less or qual to 2
σ2n3 . We have used the fast that ξi is a stationary sequence:

Smi`kpωq

σ
?
n

´
Smipωq

σ
?
n

plaw)
“

Skpωq

σ
?
n
,

the latter does not depend on i. Put all together, we have

PpVδpXnq ě 3ϵq ď
ÿ

1ďiďk

Pp sup
1ďkďm`1

|Skpωq|

σ
?
n

ě
ϵ

2
q `

ÿ

1ďiďk

Pp|Ri| ě
ϵ

2
q.

The second term is controlled by
ř

1ďiďk
4
ϵ2

2
σ2n3 , where keeping k „ 1

δ fixed, converges
to zero as n Ñ 8. We now put this into the content of our assumption:

lim
λÑ8

lim sup
nÑ8

λ2Ppmax
kďn

|Sk| ě λσ
?
nq “ 0.
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It remains to work
ÿ

1ďiďN

Pp sup
1ďkďm`1

|Sk| ě
ϵ

2
σ

?
nq “

1

δ
Pp sup

1ďkďm`1
|Sk| ě

ϵ

2
σ

?
nq.

Set λ “ ϵ
2

b

n
m`1 , recall that m “ r δn s, so 1

δ ď n
m ď 8

ϵ2
λ2. Then

1

δ
Pp sup

1ďkďm`1
|Sk| ě

ϵ

2
σ

?
nq ď

8

ϵ2
λ2Pp sup

1ďkďm`1
|Sk| ě λ ¨ σ

?
m` 1q,

which, by the assumption, converges to zero as λ Ñ 8, completing the proof. l

Before proceeding further we recall the following inequality:

Lemma 5.1.25 (Etemai’s inequality) Let tξiu be independent random variables, and
Sk “

řk
i“1 ξi. Then for any number a ą 0,

Pp max
1ďkďm

|Sk| ě 3aq ď 3 max
1ďkďm

Pp|Sk| ě aq.

Lemma 5.1.26 The conditions of Lemma 5.1.24 is satisfied by tXnu.

Proof For any λ ą 0, we want to show that

lim
λÑ8

lim sup
nÑ8

λ2Ppmax
kďn

|Sk| ě λσ
?
nq “ 0.

By Etemadi, it is sufficient to show that

lim
λÑ8

lim sup
nÑ8

λ2 max
kďn

P|Sk| ě λσ
?
nq “ 0.

Since Sk

σ
?
k

Ñ Np0, 1q, denoting η such a standard Gaussian random variable. For
Gaussian random variable,

Pp|η| ě λq ď
Erη4s

λ4
“ 3λ´4.

We may choose k0 such that for k ě k0, the error between P|Sk| ě λσ
?
nq and Pp|η| ě λq

is small. For sufficiently large n, we may assume that k0 ď n. For k ě k0,

P|Sk| ě λσ
?
nq ď P|Sk| ě λσ

?
kq ď λ´4 ` Pp|η| ě λq ď

4

λ4
.

For k ď k0 ď n,

P|Sk| ě λσ
?
nq ď

E|Sk|2

λ2σ2n
“

k0
λ2n

.

Overall,

Pp|Sk| ě λσ
?
nq ď maxp

k0
λ2n

,
4

λ4
q Ñ 0

as n Ñ 8, proving the desired inequality. l
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Proposition 5.1.27 (Donsker’s theorem /Invariance Principle) Given a sequence of
mean zero independent identically distributed real valued random variables ξn with
variance σ2. Set

S0 “ 0, Sn “

n
ÿ

k“1

ξk.

Then Xn, where it is defined by piecewise interpolation by

Xn
t pωq “

Srntspωq

σ
?
n

` pnt´ rntsq
ξrnts`1pωq

σ
?
n

,

converges in distribution to the standard Brownian motion.

Proof Since tXn, n P Nu is relatively compact ,by Lemma 5.1.26, it remains to identify
the limiting distributions. Observe that rnts

n Ñ t, it follows by Markov-Chebeshev
inequality that

Rnptq :“ pnt´ rntsq
ξrnts`1

σ
?
n

Ñ 0.

By the central limit theorem, Xn
t converges to the standard normal distribution for

every t. To obtain convergence in distribution of the stochastic process, we work with
their increments:

pXn
s , X

n
t ´Xn

s q “ p
1

σ
?
n
Srnss,

1

σ
?
n

pSrnts ´ Srnssqq ` pRn
s , R

n
t ´Rn

s q,

Now p 1
σ

?
n
Srnss,

1
σ

?
n

pSrnts ´ Srnssqq Ñ pN1, N2q, where pN1, N2q are independent standard
normal distribution with variance s and t´s respectively. By the continuous mapping
theorem

p
1

σ
?
n
Srnss,

1

σ
?
n

pSrntsq Ñ pN1, N1 `N2q.

Since pRn
s , R

n
t ´Rn

s q Ñ p0, 0q in probability,

pXn
s , X

n
t q Ñ pN1, N1 `N2q.

Similarly one observe that as n Ñ 8,

pXn
t1 , X

n
t2 ´Xn

t1 , . . . , X
n
tk

´Xn
tk´1q Ñ pBt1 , Bt2 ´Bt1 , . . . , Btk ´Btk´1q

in law where B is a one dimensional Brownian motion. Consequently, as n Ñ 8, pXn
t q

converges in distribution to a Brownian motion. l
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5.1.6 Cádlág processes

We briefly discuss the analogue for the space D, of Cádlág processes. Such processes
has at mostly countable number of discontinuity, and there can be at most a finite
number of points at which the jump exceeds a certain given size. Consequently,
supt |fptq| ă 8 for f P D.

Define for any interval I:

V pf, Iq “ sup
s,t,PI

|fpsq ´ fptq|.

Since Cádlǵ functions are only right continuous, we are interested in intervals of the
form rs, tq. The idea is to take t to be one of the point of discontinuity thus introducing
special partitions of r0, 1s.

Let us consider δ-sparse sets: this is a finite collection of points ttiu with

minptt ´ ti´1q ą δ.

For 0 ă δ ă 1, define

V 1
δ pfq “ inf

δ´sparsettiu
max

i
sup

s,t,Prti,ti`1q

|fpsq ´ fptq|.

The infimum is taken over all δ-spare sets ttiu. Then,

lim
δÑ0

V 1
δ pfq “ 0

is necessary and sufficient for a function f to belong to D. The idea is that we can
choose a δ-sparse set containing the points of discontinuous. One can define a metric
on D as follows.

Definition 5.1.28 Let Λ be a set consisting of strictly increasing and continuous
mapping from r0, 1s onto r0, 1s with λp0q “ 0 and limtÒ8 λptq “ 8. A function in Λ is
referred as a time change.

Its possible to define a metric with

dpf, gq “ inf
λPΛ

psup
t

|λptq ´ t| ` |f ˝ λ´ g|8u.

This defines a (incomplete) metric on D. Then D is a separable Polish space. (By
Polish we mean that there exists a complete metric inducing the same topology).

Definition 5.1.29 The Skorohod topology, on the cádlág space DpR`;Rdq, is charac-
terised by the following convergence. A sequence fn Ñ f if and only if there exists a
sequence λn P Λ with the following holds:
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• supt |λnptq ´ t| Ñ 0

• suptďN |fn ˝ λn ´ f | Ñ 0 for all N .

Proposition 5.1.30 If f is a continuous function, then a sequence fn P D converge in
the Skorohod topology if and only if they converge locally uniformly.

Proof To see this note that

|fnptq ´ fptq| ď |fn ˝ λn ˝ λ´1
n ptq ´ f ˝ λ´1

n ptq| ` |f ˝ λ´1
n ptq ´ fptq|.

Note that if the distance between λ and the identity map is less than 1, then

sup
tPr0,Ns

|fnptq ˝ λn ˝ λ´1ptq ´ f ˝ λ´1
n ptq| ď sup

tPr0,N`1s

|fn ˝ λnptq ´ fptq| Ñ 0,

by the convergence in D. Also by the uniform continuity of f ,

lim
nÑ8

ÿ

tPr0,Ns

|f ˝ λ´1
n ptq ´ fptq| Ñ 0,

concluding the proof for the assertion. l

Theorem 5.1.31 A necessary and sufficient condition for a set in PpX q to be relatively
compact is that:

sup
fPA

}f} ă 8

and
lim
δÑ0

sup
fPA

V 1
δ pfq “ 0.

To identify the limit, we only need to show the convergence of the finite dimensional
distributions (with times in TP : the collection of points for which the projection πt os
continuous except for a set of P -measure zero). It is sufficient to identify the limit on
a dense subset of r0, T s.

An interesting concept is C-tight.

Definition 5.1.32 A sequence of stochastic processes Xn is C-tight if it is tight and
that all limit point of the sequence are probability distributions of a continuous pro-
cess, in other words these probability distribution has full measure on the Wiener
space.

This allows to discuss the convergence of discontinuous processes and obtaining
another version of Donsker’s type theorem for

1

σ
?
n
Srnts.



Chapter 6

Ergodic Theorems

6.0.1 The adjoint operator

Let L denote the generator of a Markov process. If π is an invariant probability mea-
sure, then

ş

Ttfdπ “
ş

fdπ. If f is in the domain of its generator and if we can exchange
the order of integration and differentiation, then

ş

Lfdπ “ 0. This procedure usually
holds for f P C8

K . If the invariant measure is of the form dπ “ ϱ dx where ϱ : X Ñ R is
a density function, and if L˚ denote the L2-adjoint of L, then formally,

ş

X fL
˚ϱ dx “ 0.

Hence we often look for a solution of L˚ϱ “ 0 and then proceed to show ϱdx is an
invariant measure.

Example 6.0.1 If

Lf “
1

2

d
ÿ

i,j“1

ai,j
B2

Bxixj
fpxq `

d
ÿ

k“1

bkpxq
B

Bxk
fpxq,

Then for any C2 function f with compact support and any function g, we may apply
integration by parts formula:

ż

Lfg dx “ ´

ż

f
Bg

Bxk
dx´

ż

fpg div bqdx`
1

2

d
ÿ

i,j“1

ż

f
B2pai,jgq

BxiBxj
.

Hence

L˚g “ ´bk

d
ÿ

k“1

Bg

Bxk
`

1

2

d
ÿ

i,j“1

ai,j
B2g

BxiBxj
`
ÿ

j

ÿ

i

Bai,j
Bxi

Bg

Bxj
`

1

2

B2ai,j
BxiBxj

´ g div b.

For compact manifolds, if L is smooth and strictly elliptic, then it has a unique
invariant probability measure. This follows from the fact that the semi-group is strong
Feller.

139
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Example 6.0.2 Let Lfpxq “ 1
2apxqf2pxq ` bpxqf 1pxqdx, then

ż

Lfϱdx “

ż

fL˚ϱdx “

ż

fp´pbϱq1pxq `
1

2
paϱq2qdx.

Formally, ϱ satisfies,
1

2
aϱ2 ` pa1 ´ bqϱ1 ` p

1

2
a2 ´ b1qϱ “ 0.

6.1 Lp-Semigroups and Invariant Measure

Let X be a separable complete metric space. Let E be a closed subspace of BbpX q.

Suppose that L generates a strongly continuous contraction semi-group Tt on E

and E is separating, then any solution Xt to the martingale problem for L with initial
distribution µ is a Markov process for Tt and

ErfpXt`sq | Fss “ TtfpXsq (6.1)

for any f P E. See Theorem 4.1 in [3, pp182]. Furthermore uniqueness holds for the
martingale problem for L with the initial distribution µ.

We introduce two examples of strongly continuous semi-groups on Lp.

Lemma 6.1.1 • (Minkowski’s integral inequality) Let f : Rm ˆ Rn be measurable.
Then, for 1 ď p ă 8,

ˆ
ż

Rn

ˇ

ˇ

ˇ

ˇ

ż

Rm
fpx, yqdy

ˇ

ˇ

ˇ

ˇ

p

dx

˙
1
p

ď

ż

Rn

ˆ
ż

Rm
|fpx, yq|

pdx

˙
1
p

dy.

In other words,
›

›

›

›

ż

Rm
fp¨, yqdy

›

›

›

›

p

ď

ż

Rn
}fpx, ¨q}p dx.

• (Young Inequality) Let f,K : Rn Ñ R be measurable, f P Lp and K P L1. Then the
convolution f ˚K is in Lp for any 1 ď p ď 8:

}f ˚K}p ď }f}p}K}1.

Example 6.1.2 For the heat semi-group, we already have a transition semi-group,
we are only concerned with a space on which Tt is a strongly continuous semi-group.
Indeed, on Lp X L8, }Ptf}p ď }f}p, by the Young inequality. The heat semigroup thus
extends to a semi-group on Lp by the contraction property and the fact that C8

K is
dense in Lp.
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To show the semi-group on Lp is strongly continuous, first let f be smooth with
compact support. For any ϵ ą 0 choose δ ą 0 so |fpxq ´ fpyq| ă ϵ{2 for |x´ y| ă δ and let
Ktpxq “ Ptp0, xq.

ˇ

ˇ

ˇ

ˇ

ż

Rn
Ktpyqpfpx´ yq ´ fpxqqdy

ˇ

ˇ

ˇ

ˇ

8

ď
ϵ

2
` 2|f |8

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|y|ěδ

1
?
2πt

n{2
e´

|y|2

2t dy

ˇ

ˇ

ˇ

ˇ

ˇ

8

ă ϵ

for t sufficiently small, |Ptfpxq ´ fpxq| Ñ 0 for such f . Since |Ptf ´ f | is uniformly
bounded in Lp for any p, then the convergence is in Lp. For f P Lp, choose fn Ñ f in
Lp and fn smooth with compact supports, then

}Ptf ´ f}p ď }Ptf ´ Ptfn}p ` }Ptfn ´ fn}p ` |fn ´ f}p Ñ 0.

Let X be a Markov process on X with transition semi-group Tt on BbpX q. Recall
that a probability measure π on X is called invariant for X if

ż

X
Ttfpxqπpdxq “

ż

X
fpxqπpdxq

for all t ě 0 and f P BbpX q.

Lemma 6.1.3 Let π P PpX q be an invariant measure for a right-continuous sample
paths Markov processX. Then pTtq extends to a Markov transition semigroup on LppX , πq

for any p ě 1. Furthermore Tt is a positive preserving strongly continuous contraction on
LppX , πq.

Proof Let f P LppX , πqXL8. Then |Ttf |p “
ˇ

ˇ

ş

fpyqPtpx, dyq
ˇ

ˇ

p
ď Tt|f |p by Jensen’s inequal-

ity, whence

p}Ttf}Lpqp “

ż

|Ttf |pπpdxq ď

ż

Ttp|f |pqπpdxq “ p}f}Lpqp,

since π is invariant. The set of continuous compactly supported functions is dense
in Lp, so Tt extends to a contraction semigroup on LppX , πq. By the right-continuity
of the process, Ttfpxq Ñ fpxq as t Ñ 0 for any f P BCpX q X Lp, |Ttf ´ f |Lp Ñ 0 by the
dominated convergence, and this holds for any f P LppX , πq since BCpX q is a dense
subspace of LppX , πq. The semigroup on Lp inherits the positive preserving property.

l

6.2 Characterisation of Invariant Measures

The following theorem unifies several notions of invariant measures, see [3, pp239].
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Theorem 6.2.1 Suppose that L generates a strongly continuous contraction semi-group
Tt on E and E is measure determining (Bb is dense in E), and the martingale problem for
L is well posed. Let (right continuous) process Xt be the solution for the martingale prob-
lem for L with the initial condition π. Then the following is equivalent for a probability
measure π.

1. The distribution of Xt is µ for all time t ě 0.

2. θtX and X have the same finite dimensional distributions.

3.
ş

X Ttf dπ “
ş

X f dπ, for every f P E, t ě 0.

4.
ş

X Lfdπ “ 0 for any f P DompLq.

Proof

• (ii) obviously implies (i).

• (i) ùñ (ii) If LpXtq “ π for some t ą 0, then θtX is a solution of the martingale prob-
lem with the initial value π also. By the uniqueness to the martingale problem,
the process θtX and X have the same probability distributions.

• (ii) ùñ (iii) Let f P E, according to (6.1),
ż

Ttfpxqµpdxq “ ErfpXtqs “ EfpθsXtq “

ż

Tt`sfpxqµpdxq.

• (iii) ùñ (i) The above shows that ErfpXtqs “ EfpXt`sqq for any f P E. Since E is
measure determining, LpXtq “ LpXt`sq.

• (iii) ùñ (iv) is immediate from the definition of the generator.

• (iv) ùñ (iii), for f P DpLq,
ż

X
pTtf ´ fqdπ “

ż

X

ż t

0

B

Bs
Tsf ds dπ “

ż

X

ż t

0
LTsf ds dπ,

the right hand side equals
ż

X
L
ˆ
ż t

0
Tsf ds

˙

dπ “ 0.

By density of DpLq in E,
ş

X pTtf ´ fqdπ “ 0 for every f P E and every t ą 0.

This completes the proof. l
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6.2.1 Lyapunov Function Technique

In the content of the theorem below, a Lyapunov function is a function with LV ď

K ´ cV .

Note that if V is twice continuous, then by Itô’s formula, V pxtq ´
şt
0 LV pxsqds is a

local martingale. If LV ď K ´ cV , V pxtq ´
şt
0pK ´ cV pxsqqds is expected to be a super-

martingale.

Definition 6.2.2 Let xt denote a Markov process with generator L. A measurable
functions is said to satisfy that LV ď K ´ cV , if

V pxtq ´

ż t

0
pK ´ cV qpxsqds (6.2)

is a super-martingale, for every starting point x0. In this content, we say V is a
Lyapunov function.

Depending on the problem we also introduce a weighted supremum norm:

}φ}V “ sup
x

|φpxq|

1 ` V pxq
.

A version of the following theorem can be found [7, Thm. 3.6]

Theorem 6.2.3 Let Tt be a Markov semi-group on BbpX q with generator L. Suppose
that the following hold:

• There exists a measurable function V : X Ñ R` such that LV ď K ´ cV for some
positive constants c and K.

• For every R ą 0, there exists a constant α ą 0, and a positive number t0, such that
the transition kernels satisfy:

}Pt0px, ¨q ´ Pt0py, ¨q}TV ď 2p1 ´ αq

for all x, y P tV pxq ` V pyq ď Ru.

Then, the Markov process has a unique invariant probability measure π and there exists
C ą 0 and ϱ P p0, 1q such that for every measurable function φ with }φ} ă 8,

}Ttφ´ φ̄}V ď Ce´ϱt}φ´ φ̄}V

where φ̄ “
ş

φdπ.
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Proof There exists a corresponding theorem for discrete time Markov processes in [7,
Thm. 3.6] in Convergence of Markov processes. Applying that theorems to P “ Tt0, we
see that there exists an unique invariant probability µ such that pTt0nq˚µ “ µ for every
n, It follows immediately that Tt has at most one invariant measure. Furthermore,

}Tnt0φ´ φ̄}V ď Ce´ϱt}φ´ φ̄}V .

Now for any t, written as t “ t0m ` α where α P r0, t0q. Then assuming φ̄ “ 0 for
simplicity of notation,

}Ttφ}V “ }Tt0mTt´t0mφ}V ď Ce´ϱt}Tt´t0mφ}V ď Ce´ϱt}φ}V ,

proving the estimate for the time continuous case. l

Example 6.2.4 Consider Lfpxq “ ´bxf 1pxq ` 1
2f

2pxq,

dxt “ ´bxtdt` dWt.

It is immediate that the Gaussian measure π “ Np0, 1
2bq is an invariant probability

measure. The transition probability Ptpx, ¨q is Gaussian with center e´tx and variance
şt
0 e

´2pt´sqds. In fact, the solutions are

Ftpxq “ e´btx0 `

ż t

0
e´bpt´sqdWs .

Its probability law is Gaussian with center e´btx0 and variance σptq2 “ 1
2bp1 ´ e´2btq,

which converges to 1
2b . For any bounded measurable function f :

Ptfpxq “
1

?
2πσptq

ż

e
´

|y´e´2btx0|2

2σptq fpyqdy.

This is a strong Feller semi-group, and Ptf converges to
ż

fdπ “

c

b

π

ż

e´b|y|2dy.

The transition densities Ptpx, ¨q and Ptpy, ¨q have an overlap, their total variation dis-
tance is smaller than 2, so the conditions of the theorem hold with the Lyapunov
function V pxq “ |x|2. If we take the initial condition

ż t

´8

esdWs,

which is independent of pWt, t ě 0q, we see that the solution in invariant.

It is known that the set of invariant probability measures for a Feller Markov process
is a closed convex hull and the extreme measures, rather the invariant probability
measures induced on the path space with the extreme measure as its marginal dis-
tributions, are ergodic invariant measures in the sense that the shift invariant sets
have measure 0 or 1.
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Discrete time Markov processes

7.0.1 Lyapunov Function test

One simple way of checking that the tightness condition of the Krylov-Bogoliubov
theorem holds is to find a so-called Lyapunov function for the system. A Lyapunov
function is allowed to take thev value `8. We clarify what does it mean to integrate
a function that might take the value `8. Let X0 “ tx : V pxq ă 8u. If µ is a measure
on X with µpX0q “ 1, we define

ş

X V dµ “
ş

X0
V dµ, otherwise we set

ş

X V dµ “ 8. In
particular the assumption that TV pxq ď γV pxq `C implies that P px,X0q “ 1 for every x
with V pxq ă 8.

Lemma 7.0.1 Let P be a transition function on X and let V : X Ñ R` Y t8u be a Borel
measurable function. Suppose there exist a positive constant γ P p0, 1q and a constant
C ą 0 such that

TV pxq ď γV pxq ` C ,

for every x such that V pxq ‰ 8. Then

TnV pxq ď γnV pxq `
C

1 ´ γ
. (7.1)

Proof This is a simple consequence of the Chapman-Kolmogorov equations:

TnV pxq “

ż

X
V pyqPnpx, dyq “

ż

X
TV pyqPn´1px, dyq “

ż

X

ż

X
V pyqP pz, dyqPn´1px, dzq

ď C ` γ

ż

X
V pzqPn´1px, dzq ď . . .

ď C ` Cγ ` . . .` Cγn ` γnV pxq ď γnV pxq `
C

1 ´ γ
,

145
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completing the proof. l

Typically, V pxq “ |x|p or V pxq “ log |x|, etc... These allow us to control E|xn|p etc.
Note the following:

• If V is bounded EV pxnq ă 8 provides no information on tightness of the law of
txnu.
To avoid this assume V ´1pr0, asq :“ ty : V pyq ď au is compact.

• We can allow V “ `8 where xn does not visit. But V should not be `8 every-
where, i.e. V ´1pR`q ‰ ϕ.

Definition 7.0.2 Let X be a complete separable metric space and let P be a transition
probability on X . A Borel measurable function V : X Ñ R` Y t8u is called a Lyapunov
function for P if it satisfies the following conditions:

1. V ´1pR`q ­“ ϕ.

2. For every a P R`, the set ty : V pyq ď au is compact.

3. There exist a positive constant γ ă 1 and a constant C such that

TV pxq “

ż

X
V pyqP px, dyq ď γV pxq ` C ,

for every x such that V pxq ‰ 8.

With this definition at hand, it is now easy to prove the following results.

Theorem 7.0.3 (Lyapunov function test) If a transition probability P is Feller and
admits a Lyapunov function, then it has an invariant probability measure.

Proof Let x0 P X be any point such that V px0q ‰ 8, we show that the sequence of
measures tPnpx0, ¨ qu is tight. For every a ą 0, let Ka “ ty |V pyq ď au, a compact set. By
the lemma above,

TnV px0q “

ż

X
V Pnpx, dyq ď γnV pxq `

C

1 ´ γ
.

Tchebycheff’s inequality shows that

Pnpx0, pKaqcq “

ż

tV pyqąau

Pnpx0, dyq ď

ż

tV pyqąau

V pyq

a
Pnpx0, dyq ď

1

a
TnV px0q

ď
1

a
pV px0q `

C

1 ´ γ
q.
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We have used Lemma 7.0.1 and the fact that γ ă 1. The results follows from conver-
gence of the right hand side, as a Ñ 8, with rate uniform in n. (More precisely, for
every ε ą 0 we can now choose a ě 1

ϵ

´

V px0q ` C
1´γ

¯

, then Pnpx,Kaq ě 1 ´ ε for every
n ě 0.) We can now use Krylov-Bogoliubov theorem to conclude. l

The proof the previous theorem suggests that a Lyapunov function V for T allows
us to deduce information on its invariant measures. E.g. if V pxq “ |x|2 we expect to
deduce that π has second moment and the second moment bound C{p1 ´ γq, where C
and γ are the constants appearing in (7.1). This is indeed the case, as shown by the
following proposition:

Proposition 7.0.4 Let P be a transition probability on X and let V : X Ñ R` be a
measurable function such that there exist constants γ P p0, 1q and C ě 0 with

ż

X
V pyqP px, dyq ď γV pxq ` C .

Then, every invariant measure π for P satisfies
ż

X
V pxqπpdxq ď

C

1 ´ γ
.

Proof Let M ě 0 be an arbitrary constant. As a shorthand, we will use the notation
a ^ b to denote the minimum between two numbers a and b. Let VM “ V ^ M . For
every n ě 0, one then has the following chain of inequalities:

ż

X
VM pxqπpdxq “

ż

X
VM pxq

`

Tnπ
˘

pdxq “

ż

X
TnVM pxqπpdxq

ď

ż

X
pγnVM pxq `

C

1 ´ γ
qπpdxq

We have used Jensen’s inequality. Since the function on the right hand side is
bounded by M , we can apply the Lebesgue dominated convergence theorem. It yields
the bound

ż

X

`

V pxq ^M
˘

πpdxq ď
C

1 ´ γ
,

which holds uniformly in M , and the result follows. l

We complete this section with a couple of inequalities which can be handy for
applying Lyapunov function methods.

Lemma 7.0.5 For any p ě 1 and any δ ą 0 there exists a constant K ą 1 such that

|1 ` x|p ď K|x|p ` 1 ` δ.

Note that if x ď 0, |x` 1|p ď 1 ` |x|p.
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Proof This is clear if x ă 0. For p an integer, this can also be obtained by apply
Young’s inequality to terms |x|p

1

|y|p´p1

in the expansion of |x` y|p.

Now we assume x ě 0. Let fpxq “ |1 ` x|p. Let gpxq “ K|x|p ` 1 ` δ. Note that
gp0q ą fp0q. If fpxq ě gpxq for some x, then by the intermediate value theorem there
exists a point where they have equal value. Let x0 be the first point they are equal.
Then x0 ą 0. Choose K “

´

| 1
|x0|p

` 1|p
¯

. Then fpxq “ |x|p
´

| 1
|x|p

` 1|p
¯

ď K|x|p for any
x ě x0. l

Young’s inequality: for any α, β ą 0 with 1
α ` 1

β “ 1,

ab ď
pϵaqα

α
`

bβ

βϵβ
.

7.0.2 Application to a random dynamical system

In this section, let pxnq be a Markov process defined by a recursion relation of the type

xn`1 “ F pxn, ξnq , (7.2)

for tξnu a sequence of independent and identically distributed random variables taking
values in a measurable space Y, and all independent of x0, and F : X ˆ Y Ñ X a Borel
measurable function. Then for any V P BbpXq,

TV pxq “ ErV pF px, ξnqqs.

An effective criteria for the transition probabilities to be Feller is as follows:

Theorem 7.0.6 Let pxnq be a Markov process defined by a recursion relation of the type

xn`1 “ F pxn, ξnq ,

for tξnu a sequence of i.i.d. random variables taking values in a measurable space Y
and F : X ˆ Y Ñ X . If the function F p¨, ξnq : X Ñ X is continuous for almost every
realisation of ξ (If A is the set of y such that x ÞÑ F px, yq is continuous, then the property
that Ppξn P Aq “ 1 does not depend on n.), then the corresponding transition semigroup
is Feller.

Proof Denote by P̂ the law of ξn on Y and by φ : X Ñ X an arbitrary continuous
bounded function. It follows from the definition of the transition semigroup T that

`

Tφ
˘

pxq “ E
`

φpxn`1q |xn “ x
˘

“ EφpF px, ξnqq “

ż

Y
φ
`

F px, yq
˘

P̂pdyq .
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Let now tznu be a sequence of elements in X converging to z. Lebesgue’s dominated
convergence theorem shows that

lim
nÑ8

`

Tφ
˘

pznq “ lim
nÑ8

ż

Y
φ
`

F pzn, yq
˘

P̂pdyq “

ż

Y
lim
nÑ8

φ
`

F pzn, yq
˘

P̂pdyq

“

ż

Y
φ
`

F pz, yq
˘

P̂pdyq “
`

Tφ
˘

pzq ,

which implies that Tφ is continuous and therefore that T is Feller. l

If F is continuous in the first variable for each y, then the Markov process is Feller.

Theorem 7.0.7 Suppose that the function F p¨, ξnq : X Ñ X is continuous for almost
every realisation of ξn. If, furthermore, there exists a Borel measurable function V : X Ñ

R with compact sub-level sets and constants γ P p0, 1q and C ě 0 such that
ż

Y
V
`

F px, yq
˘

P̂pdyq ď γV pxq ` C , @x P X ,

where P̂ is the distribution of ξn, then the process x has at least one invariant probability
measure.

Proof Indeed,

P px,Aq “ Epx1 P A|x0 “ xq “ EpF px0, ξ0q P A|x0 “ xq “

ż

1ApF px, yqqP̂ pdyq.

Then P is Feller follows from Theorem 7.0.6. Then the left hand side of the given in-
equality is TV and V is a Lyapunov function. The existence of an invariant probability
measure now follows from the Lyapunov function test. l



Chapter 8

Ergodic Theorem

8.1 Ergodic Theorems

In this small section we introduce/recall some core notions of dynamical systems,
these will connect to stationary Markov process viewed on the canonical path space
CpR`,X q. A Markov chain will be viewed to be on XN or two-sided path space X Z.

Definition 8.1.1 A dynamical system consists of a probability space pΩ,F ,Pq and a
measure preserving measurable map θ : Ω Ñ Ω, i.e. a map such that Ppθ´1pAqq “ PpAq

for every A P F (i.e. θ˚P “ P).

Definition 8.1.2 Given a measurable transformation θ on pΩ,F ,Pq, a set with θ´1pAq “

A is called an invariant set for θ (or θ-invariant). Then the invariant σ-algebra I Ă F
is defined as

I “ tA P F : θ´1pAq “ Au.

It is clear that I is again a σ-algebra. In order to emphasise the invariance with
respect to θ, we may refer an invariant set as a θ-invariant set.

Definition 8.1.3 A measurable function f : Ω Ñ R is said to be θ-invariant (or simply
invariant) if f ˝ θ “ f .

Exercise 8.1.4 Let f : Ω Ñ R be an F- measurable function. Then f is invariant if
and only if f is measurable with respect to the invariant σ-algebra I.

Definition 8.1.5 Given a dynamical system pΩ,F ,Pq and θ. We say θ is ergodic if any
θ-invariant set has either measure 0 or measure 1. Note that this is a property of the
map θ as well as of the measure P. We also say P is ergodic (w.r.t. θ).

150
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Proposition 8.1.6 The following statements are equivalent.

1. P is ergodic (θ is ergodic);

2. Every invariant integrable function f is almost surely a constant.

3. Every invariant bounded function is almost surely a constant.

Proof From (2) to (3) is trivial. It remains to show (3) ñ (1), and (1) ñ (2).

(3) ñ (1). Assume that (3) holds. Let f “ 1A where A is an invariant set. Then 1A
in invariant and 1A “ 1 or 0 a.e., hence 1A “ PpAq P t0, 1u and P is ergodic.

(1) ñ (2). Suppose that P is ergodic, i.e. PpAq “ 1 or 0 for any A P I. Let function
f be integrable and invariant, then f is measurable with respect to I.1 We prove that
f “ Ef a.e. . Note that the following sets

A` “ tω P Ω | fpωq ą Efu, A´ “ tω P Ω | fpωq ă Efu, A0 “ tω P Ω | fpωq “ Efu,

are invariant sets and form a partition of Ω. Therefore, by ergodicity, exactly one of
them has measure 1 and the other two must have measure 0. Suppose PpA`q “ 1,
then

0 “

ż

Ω
pf ´ Efq dP “

ż

A`

pf ´ Efq dP.

Then f ´ Ef “ 0 a.s. on A`, which is a contradiction. Similarly if PpA´q “ 1, we also
have f “ Ef a.e., hence we must have PpA0q “ 1. l

Theorem 8.1.7 (Birkhoff’s Ergodic Theorem) Let pΩ,F ,P, θ, Iq be as above and let
f : Ω Ñ R be such that E|f | ă 8. Then,

lim
NÑ8

1

N

N´1
ÿ

n“0

fpθnωq “ E
`

f | I
˘

almost surely.

Let θ be the shift operator on X Z, i.e. θpx.qpnq “ xpn` 1q, so that
`

θnx
˘

pmq “ xpn`mq ,

and we write θ “ θ1 and θ´1 “ θ´1. As in previous section, we denote by I the set of all
measurable subsets of X Z that are invariant under θ,

I “ tC P BpX zq : θ´1C “ Cu.

1See Exercise 3 of Problem Sheet 8.
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Also let P “ pP px, ¨q, x P X q be a family of transition probabilities and a probability
measure π P PpX q satisfying π “

ş

X P px, ¨qπpdxq.

By the definition of stationarity, one has:

Lemma 8.1.8 The triple pX Z,BpXZq,Pπ, θq defines a dynamical system, and θ is contin-
uous (This is called a continuous dynamical system).

Proof We have already seen that θ is Pπ-invariant . It is clear that θ is continuous
(with respect to the product topology). The product topology is the coarsest topology
such that each projection map πi : ΠX Ñ X is continuous. We only need to test with
open sets of the form π´1

i pUq. It is clear that θ´1pπ´1
i pUqq is an open set. l

Remember that the measure Pπ is ergodic if every A P I has PπpAq P t0, 1u.

Definition 8.1.9 We say that an invariant measure π of a Markov process with asso-
ciated transition semigroup T is ergodic if the corresponding measure Pπ is ergodic
for θ.

Theorem 8.1.10 Let P “ P px, ¨q be a transition probability with an invariant probability
measure π. Let pxnqnPZ be a time homogeneous Markov process with t.p. P and initial
position x0 “ x. Then for π-almost every x P X , the following statements hold:
1. For any integrable function f : X Z Ñ R,

1

n

n
ÿ

k“1

fpθkx.pωqq converges for P-a.e. ω.

2. If furthermore π is ergodic,

1

n

n
ÿ

k“1

fpθkx.pωqq
nÑ8
ÝÝÝÑ

ż

X
f dPπ P-a.e. ω.

Proof There are many proofs for this, here we illustrate the use of stopping times.
First let x0 „ π (then the Markov chain with initial condition x0 is stationary). By
Theorem ??, we have

1

n

n
ÿ

k“1

fpθkx.q ÝÑ f̄px.q, P-a.e. ω.

Then by the dominated convergence theorem

E

«

1

n

n
ÿ

k“1

fpθkx.q | σpx0q

ff

nÑ8
ÝÝÝÑ E

“

f̄px.q|σpx0q
‰

, P-a.e. ω.
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From this we deduce that for π-almost every x,

E

«

1

n

n
ÿ

k“1

fpθkx.q | x0 “ x

ff

nÑ8
ÝÝÝÑ E

“

f̄px.q|x0 “ x
‰

, P-a.e. ω.

This can be seen by testing the conditional expectation in the previous line with func-
tions of the form φpx0q and turn the expectation into integration with respect to x0.

l

8.2 Structure Theorem

Let T be the transition operator for a Markov chain, IP “ tπ P PpX q : Tπ “ πu denote
the set of invariant probability measures. It is a convex set: If π1 and π2 are in IP ,
then any of their convex combination is in IP also.

If T is Feller, then it is a continuous map from PpX q to PpX q in the topology of
weak convergence. Therefore, if πn is a sequence of invariant probability measures
converging weakly to a limit π, one has

Tπ “ T lim
nÑ8

πn “ lim
nÑ8

Tπn “ lim
nÑ8

πn “ π ,

so that π is again an invariant probability measure for P . This shows that if T is
Feller, then the set IP is closed (in the topology of weak convergence).

Definition 8.2.1 A probability measure π P IP is an extremal, of IP , if π cannot be
decomposed as π “ tπ1 ` p1 ´ tqπ2 with t P p0, 1q and πi P IP are distinct.

Theorem 8.2.2 Given a time homogeneous transition probability P , with corresponding
transition operator T . With IP denoting the set of probability measures invariant w.r.t.
P , set

E “ tπ P PpX q : Tπ “ π, π is ergodic u Ă IP .

Then the following statements hold.

(a) The set IP is convex and E is precisely the set of its extremal points.

(b) Any two ergodic invariant probability measures are either identical or mutually
singular.

(c) Furthermore, every invariant probability measure π P IP is a convex combination
of ergodic invariant probability measures, i.e. for every invariant measure µ P I,
there exists a probability measure Qµ on E such that

µpAq “

ż

E
νpAqQµpdνq .
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Remark 8.2.3 As a consequence, if a Markov process admits more than one invariant
measure, it does admit at least two ergodic (and therefore mutually singular) ones.
This leads to the intuition that, in order to guarantee the uniqueness of its invariant
measure, it suffices to show that a Markov process explores its state space ‘sufficiently
thoroughly’.

8.3 Quantitative Ergodic Theorem

Let pytq be a Markov process on a metric space X with transition semi-group Tt : E Ñ E

where E Ă BbpX q is a Banach space. Note that, given geometric convergence to the
equilibrium of the Markov process,

}Ttf ´ f̄}E ď Me´λt}f}E ,

one can deduce that the convergence of the expectation of the time average to the
spatial average is of the order 1{T : Denote Ey taking expectation with respect to the
Markov process with initial value y.

›

›

›
Ey

ˆ

1

T

ż T

0
fpysqds

˙

´ f̄
›

›

›

E
“

›

›

›

1

T

ż T

0
pTsfpyq ´ f̄qds

›

›

›

E

ď
M

T
}f}E

ż 8

0
Me´λsds À

1

T

1

λ
}f}E .

However we would like to work out the difference between the time average, not the
expectation of the time average as given above, from f̄ .

Lemma 8.3.1 [Law of large numbers] Let Tt be a Markov semi-group on X . Suppose
that the following exponential ergodicity holds:

}Ttf ´ f̄}8 ď Me´λt}f}8.

Let pytq be a Markov process corresponding to Tt. Then, for any bounded function f ,

ˇ

ˇ

ˇ

1

T

ż T

0
fpypsqqds´ f̄

ˇ

ˇ

ˇ

L2pΩq
ď C

1
?
T
,

where C “

b

M
λ }f}8.

Proof Without loss of generality, let us assume that f̄ “ 0. Then

E
` 1

T

ż T

0
fpypsqqds

¯2
“ E

` 1

T 2

ż T

0

ż T

0
fpypsqqfpyprqqdrds

¯
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“
1

T 2

ż T

0

ż s

0

ż

X
TrpfTs´rfqpyqµpdyqdrds`

1

T 2

ż T

0

ż r

s

ż

X
TspfTr´sfpyqµpdyqqdrds

ď
M

T 2

ż T

0

ż T

0
e´|s´r|λ}f}28 ds dr ď

M

Tλ
p}f}8q2,

from which we see the 1?
T

rate of convergence. l

What we have in mind in the last theorem is an elliptic operator on a compact
manifold.

8.4 Functional Central Limit theorem

Given a function f centred with respect to the invariant measure for a Markov process
y with generator L, we consider

?
ϵ
şt{ϵ
0 fpyrqdr. For simplicity we shall assume that yt

solves the SDE:
dyt “

ÿ

i

YipytqdW
i
t ` Y0pytqdt. (8.1)

If g is a C2 function solving the Poisson equation and then

Mg
t :“ gpytq ´ gpy0q ´

ż t

0
Lgpysqds “

ÿ

k

ż t

0
DgpYkqpysq dW k

s

is a martingale. If Lg “ f , we expect that
?
ϵ
ş

t
ϵ
0 fpysqds “

?
ϵgpy t

ϵ
q ´

?
ϵgpy0q ´

?
ϵMg

t
ϵ

converges to a Wiener process.

Lemma 8.4.1 Let Tt be a strongly continuous semi-group on a Banach space E with
generator L. Suppose that g is a solution of Lg “ f and suppose that limtÑ8 Ttg exists
which we denote by ḡ. Then

g “ ḡ ´

ż 8

0
Ttfdt.

Proof By the semi-group theory,

Ttg ´ g “

ż t

0

B

Bs
Tsgds “

ż t

0
TsLgds

“

ż t

0
Tsfds.

Then
şt
0 Tsfds has a limit which we denote by

ş8

0 Tsfds. We take t Ñ 8 to conclude. l
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Note that under the ergodic assumption, Ttf converges. Suppose that, on the other
hand,

şt
0 Tsfds converges as t Ñ 8 in L2pdxq, i.e. the following limit exists:

lim
tÑ8

ż t

0

ż t

0
xTsfpxq, TrfpxqyL2dsdr.

Lemma 8.4.2 Let Tt be a strongly continuous semi-group on a Banach space E Ă BbpX q

with generator L. Let f P E be such that
şt
0 Tsfds and Ttf converges as t Ñ 8. Then

ş8

0 Tsfds P DpLq and it solves the Poisson equation Lp
ş8

0 Tsfdsq “ ´f .

Proof Note that
şt
0 Tsfds P DompLq, and

şt
0 Tsfds Ñ

ş8

0 Tsfds by the assumption. Since
L
şt
0 Tsfds “ pTtf ´ fq, the right hand side converges by assumption. Consequently,

ş8

0 Tsfds belongs to the domain of the closed operator L and

Lp

ż 8

0
Tsfdsq “ lim

tÑ8
Ttf ´ f.

The convergence is in the supremum norm. Then limtÑ8

şt
0 Ttfpxqds and limtÑ8 Ttfpxq

exist for every x. Fixing x, suppose that a “ limtÑ8 Ttfpxq ­“ 0. Without loss of
generality, we assumea ą 0. Let T be sufficiently large, then

şt
T Tsfpxqds ą a

2 pt ´ T q

which has no finite limit, as t Ñ 8. We conclude that limtÑ8 Ttf “ 0. l

Recall that if yt is a right continuous Markov process and an invariant probabil-
ity measure π, then its Markov semi-group extends to a positive preserving strongly
continuous contraction semi-group on Lppπq where p ě 1.

Definition 8.4.3 Let µ be a Borel measure on X and denote by L2pX q the space of L2

functions from X Ñ R. A Markov semi-group on X is said to be reversible with respect
to µ if for all f, g P L2pµq,

ż

X
gTtfdµ “

ż

X
fTtgdµ.

The measure µ is said to be a reversible measure for Tt. In this case Tt is said to be
symmetric on L2pµq.

Exercise 8.4.4 If µ is a reversible probability measure for Tt, show that it is an in-
variant measure. (Recall that Tt1 “ 1.)

Theorem 8.4.5 (Spectral Theorem) Let T be a self-adjoint operator on some separa-
ble Hilbert space H. Then, there exists a measure space pE,µq, a unitary operator
K : H Ñ L2pE,µq, and a function Λ : E Ñ R such that

DompT q “ tf P H : ΛKf P L2pE,µqu,

pKTfqpλq “ ΛpλqpKfqpλq,

where λ P E.
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Corollary 8.4.6 Let Tt : H Ñ H be a strongly continuous symmetric contraction opera-
tor with generator L, and g P DompLq then limtÑ8 Ttg exists.

Proof Since Tt is symmetric, L is self-adjoint. Since Tt is a contraction semi-group,
xLffy ď 0. By the spectral theorem, there exists a measure space pE,µq, whose σ-
algebra plays no -significant role here and so omitted, a function φ : E Ñ R, and a
unitary operator K : H Ñ L2pE,µq (an isometry, preserving the norm, and K˚ “ K´1q

such that
Lf “ K˚pφKfq

Since L is negative, xφpKfq,KfyL2 ď 0. Since K is unitary, xφpfq, fyL2 ď 0 for all f P L2,
consequently, φ ď 0. Now

Ttg “ etK
˚φKg

by functional calculus. Since φ ď 0, etK
˚φK ď 1 and limtÑ8 etK

˚φK “ 1φ“0. By the
dominated convergence theorem, as t Ñ 8

}Ttg ´ 1φ“0 g}L2 Ñ 0,

proving the claim. l

Note that 1φ“0 g is in the kernel of L in the sense that Lp1φ“0 gq “ K˚φ1φ“0Kgq “ 0.
So for any f P E,

1

t

ż t

0
Tsfds Ñ Hpfq

where Hpfq denotes the projection of f to the null space of L.

Let yt be a stationary Markov process corresponding to a symmetric semi-group Tt.

Lemma 8.4.7 Let Tt is a reversible strongly continuous contraction Markov semigroup
on L2pπq, where π is a probability measure on a smooth manifold, with generator L. Let
f : M Ñ R be a function with f̄ “ 0, f P L2pπq. Suppose that Lg “ f has a bounded C2

solution g. Suppose that

Σ2 :“

ż 8

0
xTsf, fyL2pπqds ă 8,

Then,

Ep
?
ϵ

ż t{ϵ

0

ż t{ϵ

0
Erfpysqfpyrsqdsdrq2

increases to 2t
ş8

0 xf, TsfyL2pπqds.

Proof For s ă r,

Erfpysqfpyrqs “

ż

X
TspfTr´sfqdπ “

ż

X
fTr´sfdπ “ xf, Tr´sfyL2pπq.
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We first compute

Ep
?
ϵ

ż t{ϵ

0

ż t{ϵ

0
Erfpysqfpyrsqdsdrq2

“ ϵ

ż t{ϵ

0

ż r

0
Erfpysqfpyprqs ds dr ` ϵ

ż t{ϵ

0

ż t
ϵ

r
Erfpysqfpyprqs ds dr.

“ ϵ

ż t{ϵ

0

ż r{ϵ

0

ż

X
fTr´sfdπ ds dr ` ϵ

ż t{ϵ

0

ż t
ϵ

r

ż

X
fTs´rfdπ ds dr

“ 2ϵ

ż

X
f

ż t{ϵ

0

ż u

0
Tvf dvdudπ “ 2

ż t

0

ż u1{ϵ

0
xf, Tvfydvdu1.

Suppose that
ş8

0 xf, TsfyL2pπq exists, since
şt
0xf, TsfyL2pπq ě 0,

Ep
?
ϵ

ż t{ϵ

0

ż t{ϵ

0
Erfpysqfpyrsqdsdrq2 Ñ 2t

ż 8

0
xf, TsfyL2pπqds,

the left hand side is monotone increasing in ϵ. l

The following can be found in [?], see [?, Theorem VIII.2.17].

Lemma 8.4.8 Let Xε “
`

Xε
1 , X

ε
2 , ...

˘

, ε ą 0 be a family of continuous local martingales
starting at 0. Let B1, B2, ... be independent standard Brownian motions, αij P R, i, j P N
such that

ř

j α
2
ij ă 8 for all i P N, Vi :“

ř8
j“1 αijBj , i P N, and V “ pV1, V2, ...q. If the

quadratic variation xXε
k, X

ε
l yt converges in law to xVk, Vlyt “ t

ř8
j“1 αkjαlj for all k, l P

N, t ě 0, then Xε converges to V weakly as ε Ñ 0, i.e. for each n P N, pXε
1 , ..., X

ε
nq

converges in law to pV1, ..., Vnq with respect to the uniform topology on compact intervals.

The following theorem has numerous extensions.

Theorem 8.4.9 (Functional Central Limit Theorem) Suppose that Tt is a reversible
strongly continuous contraction Markov semigroup on L2pπq, where π is a probability
measure on a smooth manifold, with generator L. Let f : M Ñ R be a function with
f̄ “ 0, f P L2pπq. Suppose that Lg “ f has a bounded C2 solution g. If

Σ2 :“

ż 8

0
xTsf, fyL2pπqds ă 8,

and yt is the stationary Markov process with transition semi-group Tt, solving the SDE
(8.1), then

1
?
ϵ

ż t

0
fpy s

ϵ
qqds “

?
ϵ

ż t{ϵ

0
fpyrqdr Ñ 2ΣWt.
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Proof Since yt solves the martingale problem for L,

Mg
t :“ gpytq ´ gpy0q ´

ż t

0
Lgpysqds

is a local martingale. In fact,

EpMg
t q2 ď 4|Ttg|2L2

` 4|g|2 `

ż t

0

ż t

0
ErLgpysqLgpyrqsdsdr ă 8.

We have used the contraction property: |Ttg|2L2
ď |g|22 and by the previous computation,

the last term is finite. Thus pMg
t q is in fact an L2- martingale and pMtq

2 ´ xMyt is a
martingale. To show that

?
ϵxMyt{ϵ converges, it is sufficient to show their quadratic

variations converge. It is easy to see that these converge in expectation.

Ep
?
ϵxMyt{ϵ ´ 2tΣq “ Epgpytq ´ gpy0q ´

?
ϵ

ż t
ϵ

0
fpysqdsq2 ´ 2tΣ Ñ 0.

Note that g P L2, and yt is stationary, so
?
ϵgpy t

ϵ
q ´

?
ϵgpy0q Ñ 0 in L2. This implies that

the martingale process converge weakly to a Wiener process. l

Note that under the assumption of the theorem,
ż t

0

ż t

0
xTsf, TrfyL2pπqdsdr À t

ż 8

0
|Tsf |L2pπqds “ tΣ2 ă 8.

Recall that under the assumptions of Lemma 8.4.2, g “ ´
ş8

0 Tsfds, which is suffi-
ciently smooth if L is nice, e.g. elliptic and smooth, and f has nice properties.
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8.4.1 Appendix: Locally Uniform Law of Large Numbers

The motivation for this section comes from with feedback models. The fast variable
maybe affected by the slow variable.

dY ϵ
t “

1
?
ϵ

ÿ

i

Vipx
ϵ
t, Y

ϵ
t qdW̃ i

t `
1

ϵ
V0pxϵt, Y

ϵ
t qdt.

We first sort out what is the averaging of long time for a function. Again let us first
consider:

dY ϵ
t “

ÿ

i

Vipx
ϵ
tϵ, Y

ϵ
t qdW̃ i

t `
1

ϵ
V0pxϵtϵ, Y

ϵ
t qdt.

We freeze the slow variable in time, as they move slowly, and consider the stochastic
equation:

dY x
t “

ÿ

i

Vipx, YtqdW̃
i
t `

1

ϵ
V0px, Ytqdt.

We further postulate that for each x, Y x
t has an invariant probability measure µx.

From earlier discussions it is reasonable to assume that
ˇ

ˇ

ˇ

ˇ

1

t

ż t

0
fpx, ysqds´

ż

fpx, yqµxpdyq

ˇ

ˇ

ˇ

ˇ

Ñ 0.

Example 8.4.10 Consider on S1 the following sde, where the parameters x taking
values in R,

dyt “ sinpyt ` xqdBt ` cospyt ` xqdt.

Its generator is Lx “ cospx` yq B
By ` 1

2 sin2px` yq B2

By2

Let us begin with a Markov process with an invariant probability measure π and
generator L. Suppose that we want to solve the Poisson equation Lg “ f . Since
ş

Lgdπ “ 0, it is necessary that
ż

fdπ “ 0.

This is called the center condition.

Suppose that L is a Markov generator for a continuous Markov process on a d-
dimensional compact manifold. Assume that L has a discrete spectrum with eigen-
values

0 “ λ0 ă λ1 ă . . . ,

and the corresponding eigen-functions en forms an orthogonal (normal) basis of L2pπq
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For simplicity we assume that

Lf “
1

2

ÿ

k

LYk
LYk

f ` LY0f.

where Yi are smooth vector fields. Suppose that tY1pxq, . . . , Ympxqu has dimension d at
every point – in this case L is said to be elliptic. It is also a diffusion operator.

Note that L applies to any constant returns zero. So e0 “ 1. Then any L2 function
f can be written as:

f “

8
ÿ

n“0

xf, enyL2en.

The condition
ş

fdπ “ 0 implies that xf, e0yL2 “ 0. Then we can solve the Poisson
equation Lg “ f explicitly. Set g “

ř8
n“1

1
λn

xf, enyL2en. It is clear that we can bound g

with bounds on f .

Definition 8.4.11 Let Lx be a family of Markov operators with a unique invariant
probability measure µx. We say that Lx satisfy a locally uniform law of large numbers
if the following holds.

(a) x ÞÑ µx is locally Lipschitz continuous in the total variation norm.

(b) There exists a positive constant Cpxq, locally bounded in x, such that for every
smooth function f : G Ñ R of compact support, there exists a constant cpfq such
that

ˇ

ˇ

ˇ

ˇ

1

T

ż t`T

t
fpzxr q dr ´

ż

G
fpyqµxpdyq

ˇ

ˇ

ˇ

ˇ

L2pΩq

ď Cpxqcpfq
1

?
T
, (8.2)

where zr denotes an Lx-diffusion.

Theorem 8.4.12 (Locally Uniform Law of Large Numbers) Let G be a compact man-
ifold. Suppose that Yi are bounded, C8 with bounded derivatives. Suppose that each

Lx “
1

2

m
ÿ

i“1

Y 2
i px, ¨q ` Y0px, ¨q

satisfies Hörmander’s condition, and has a unique invariant probability measure µx.
Then µx has a locally uniform law of large numbers.

Furthermore, there exists a positive constant Cpxq, depending continuously in x, such
that for every smooth function f : G Ñ R,

ˇ

ˇ

ˇ

ˇ

1

T

ż t`T

t
fpx, zxr q dr ´

ż

G
fpyqµxpdyq

ˇ

ˇ

ˇ

ˇ

L2pΩq

ď CpxqCpfq
1

?
T
. (8.3)
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Proof We only prove the elliptic case. It is sufficient to work with a fixed x P N . We
may assume that

ş

G fpx, yqµxpdyq “ 0. For any smooth function f with
ş

G fpx, yqµxpdyq “

0, Lxgpx, ¨q “ fpx, ¨q has a smooth solution. If f is compactly supported in the first vari-
able, so is g. We may then apply Itô’s formula to the smooth function gpx, ¨q, allowing
us to estimate 1

T

şT
0 fpyxr qdr whose L2pΩq norm is controlled by the norm of g in C1 and

the norms |Yjpx, ¨q|8. The Lx diffusion satisfies the equation:

1

T

ż T

0
fpx, zxr qdr “

1

T
pgpx, zxT q ´ gpx, y0qq ´

1

T

˜

m2
ÿ

k“1

ż T

0
dgpx, ¨qpYkpx, zxr qqdW k

r

¸

.

Since |Yjpx, ¨q|8 is bounded, it is sufficient to estimate the stochastic integral term by
Burkholder-Davis-Gundy inequality:

E

˜

m2
ÿ

k“1

ż T

0
dgpx, ¨qpYkpx, zxr qqdW k

r

¸2

ď

m1
ÿ

k“1

|Yk|28

ż T

0
E|dgpx, zxr q|2 ds.

It remains to control the supremum norm of dgpx, ¨q. This follows from elliptic regu-
larity theory. l

8.5 A basic averaging theorem– not covered in class

8.5.1 Invariant Measure

We present here a formal derivation of the formula for the invariant measure. Con-
sider an SDE of the form:

dXi
t “

ÿ

i,j

σijpXtqdB
j ` σi0pXtqdt (8.4)

Then, for any function gpXtq we define PtgpX0q :“ EgpXtq. The ıinvariant measure µ of
L is defined to be the measure that satisfies, for all functions g:

ż

PtgpXqµpdXq “

ż

gpXqµpdXq

Let us define the differential operator L “ 1
2

ř

ij σ
ijpXq B2

BXiBXj `
ř

i σ
i
0pXq B

BXi such that
from Itô’s formula applied to gpXtq, we obtain:

gpXtq “ gpX0q `

ż t

0
LgpXsqds`

ż t

0

ÿ

i,j

Bg

BXi
pXsqσijpXsqdBj

s (8.5)
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Taking expectation values in eq. (8.5) (and assuming this commutes through the
integral and L), the stochastic integral term vanishes by the martingale property and
we obtain:

PtgpX0q ´ gpX0q “

ż t

0
LPsgpX0qds (8.6)

Differentiating with respect to time then gives 9PtgpX0q “ PtgpX0q and then after for-
mally integrating we have Ptg “ etLg. Now, if L is an elliptic operator and if Xt takes
values only in a compact set, then there is a unique invariant probability measure. If
we suppose this measure to be of the form µpdXq “ ppXqdX for some density function
p then we find:

ż

“

etLgpXq
‰

ppXqdX “

ż

gpXqppXqdX (8.7)

Upon integrating by parts we find:
ż

“

etLgpXq
‰

ppXqdX “

ż

gpXq

”

etL
˚

ppXq

ı

dX (8.8)

Where L˚ is the adjoint operator to L and is given by:

L˚ “
1

2

ÿ

ij

B2

BXiBXj

`

σijpXq ¨
˘

´
ÿ

i

B

BXi

`

σi0pXq ¨
˘

(8.9)

We conclude that L˚p “ 0 almost everywhere.

8.5.2 An interactive averaging principle –not covered in class

Let us consider an equation on Td ˆ Rd: for 1 ď i ď d,θϵt “ pθ1,ϵt , . . . , θm,ϵ
t q, Iϵt “

pI1,ϵt , . . . , Im,ϵ
t q,

dθi,ϵt “
1

?
ε

m
ÿ

k“1

ωi
kpIεt qdW k

t `Ki
θpθεt , Itqdt

dIϵ,it “ Ki
Ipθϵt , I

ε
t qdt

Theorem 8.5.1 Let tωi
ku be smooth functions, and pωi

ipθqq is a positive matrix at any
point θ P T. Let Ki

I smooth functions. For any β ě 1, ą 0 and for some function cptq,

E
„

sup
sďt

|Iipsq ´ fipsq|
β

ȷ1{β

ď cptqϵ1{4 (8.10)

Proof This proof is a re-writing of that given in [11]. Throughout the proof we shall
use the following inequalities which follow from the properties of norms on Rn (see
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[?]). For all β ě 1:
˜

N
ÿ

i“1

|xi|

¸β

ď Nβ´1
N
ÿ

i“1

|xi|
β

˜

N
ÿ

i“1

|xi|

¸1{β

ď

N
ÿ

i“1

|xi|
1{β (8.11)

We wish to bound the following quantity:

Hpytq ´ fptq “ ϵ

ż t

0
rgpysq ´Qpfpbsqqs (8.12)

Now let us divide the interval of time integration into sub-intervals of length ∆t :“

ptb1´qq:

0 “ t0 ď t1 ď ... ď tN ď tN`1 “ t

tn “ n∆t pfor n “ 0, ..., Nq; N :“
“

bq´1
‰

Note the following useful bounds:

∆t ď tb1´q N ď b1´q tN`1 ´ tN ď ∆t (8.13)

After the division into sub-intervals we have:

Hipytq ´ fipbptqq “ b
N
ÿ

n“0

ż tn`1

tn

rgipyrq ´ gipFtn,rpytnqqsdr (8.14)

` b
N
ÿ

n“0

ż tn`1

tn

”

gipFtn,rpytnqq ´QipH̃pItnqq

ı

dr (8.15)

` b
N
ÿ

n“0

ż tn`1

tn

”

QipH̃pItnqq ´QipH̃pIrqq

ı

dr (8.16)

` b
N
ÿ

n“0

ż tn`1

tn

”

QipH̃pIrqq ´Qipfpbrqq

ı

dr (8.17)

Thus there are four terms to bound; we shall refer to eqs. (8.14) to (8.17) as Ai
1, A

i
2,

Ai
3, A

i
4 respectively. Consider Ai

4:

ˇ

ˇAi
4

ˇ

ˇ “ b

ˇ

ˇ

ˇ

ˇ

ż tN`1

0

”

QipH̃pIrqq ´Qipfpbrqq

ı

dr

ˇ

ˇ

ˇ

ˇ

ď b sup
D

|∇Qi|

ż tN`1

0

ˇ

ˇ

ˇ
H̃pIrq ´ fpbrq

ˇ

ˇ

ˇ
dr

Then:

|Hipytq ´ fipbptqq| ď
ˇ

ˇAi
1

ˇ

ˇ `
ˇ

ˇAi
2

ˇ

ˇ `
ˇ

ˇAi
3

ˇ

ˇ ` b sup
D

|∇Qi|

ż t

0
|Hpyrq ´ fpbrq|dr

If we sum this inequality over i we find:

ˇ

ˇ

ˇ
Hpytq ´ fpbpt^ T bqq

ˇ

ˇ

ˇ
ď

m
ÿ

i“1

`ˇ

ˇAi
1

ˇ

ˇ `
ˇ

ˇAi
2

ˇ

ˇ `
ˇ

ˇAi
3

ˇ

ˇ

˘
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` b

˜

m
ÿ

i“1

sup
D

|∇Qi|

¸

ż t

0
|Hpyrq ´ fpbrq|dr

The Gronwall inequality may be applied to this to give:

ˇ

ˇ

ˇ
Hpytq ´ fpbpt^ T bqq

ˇ

ˇ

ˇ
ď ebc1t

m
ÿ

i“1

`ˇ

ˇAi
1

ˇ

ˇ `
ˇ

ˇAi
2

ˇ

ˇ `
ˇ

ˇAi
3

ˇ

ˇ

˘

where c1 :“ p
řm

i“1 supD |∇Qi|q. We may then deduce that:

Esup
sďt

ˇ

ˇ

ˇ
Hpysq ´ fpbps^ T bqq

ˇ

ˇ

ˇ

β1{β

ď c2e
bc1t sup

i

3
ÿ

l“1

Esup
sďt

ˇ

ˇAi
l

ˇ

ˇ

β1{β

where c2 :“ mp3mq1´1{β. Now let us consider A2:

ˇ

ˇAi
2

ˇ

ˇ “ b
N
ÿ

n“0

ż tn`1

tn

”

g̃ipFtn,rpθtnq, Itnq ´QipH̃pItnqq

ı

dr

“ b∆t
N
ÿ

n“0

ˇ

ˇ

ˇ

ˇ

ˇ

1

∆t

ż ∆t

0
g̃ipFtn,rpθtnq, Itnqdr ´

ż

φ
´

MH̃pItn q

¯

g̃ipθ, ItnqdµH̃pItn q
pθq

ˇ

ˇ

ˇ

ˇ

ˇ

(8.18)

ď b∆tpN ` 1q
c3

?
∆t

ď ci3pbtq1{2
´

bq{2 ` b1´q{2
¯

(8.19)

In going from eq. (8.18) to eq. (8.19) we have used the law of large numbers as stated
in [11, pp. 814]/ From the above it also follows that:

Esup
sďt

ˇ

ˇAi
2

ˇ

ˇ

β1{β
ď ci3pbtq1{2

´

bq{2 ` b1´q{2
¯

(8.20)

Now we turn our attention to A3:

ˇ

ˇAi
3

ˇ

ˇ “ b

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“0

ż tn`1

tn

”

QipH̃pItnqq ´QipH̃pIrqq

ı

dr

ˇ

ˇ

ˇ

ˇ

ˇ

ď b∆t sup
D

ˇ

ˇ

ˇ
∇pQi ˝ H̃q

ˇ

ˇ

ˇ

N
ÿ

n“0

sup
rPr0,∆ts

|Itn ´ Itn`r|

From ?? we can see that:

|Itn ´ Itn`r| “ b

ˇ

ˇ

ˇ

ˇ

ż tn`r

tn

KIpθs, Isqds

ˇ

ˇ

ˇ

ˇ

ď b∆t sup
D

|KI |

which implies:
ˇ

ˇAi
3

ˇ

ˇ ď ci4pN ` 1qpb∆tq2 ď ci4pbtq2pb1´q ` b2´2qq

ùñ Esup
sďt

ˇ

ˇAi
2

ˇ

ˇ

β1{β
ď ci4pbtq2pb1´q ` b2´2qq
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where ci4 :“ supTmˆD |KI | supD

ˇ

ˇ

ˇ
∇pQi ˝ H̃q

ˇ

ˇ

ˇ
. It remains for us to consider A1:

ˇ

ˇAi
1

ˇ

ˇ “ b

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“0

ż tn`1

tn

rg̃ipθr, Irq ´ g̃ipFtn,rpθtnq, Itnqsdr

ˇ

ˇ

ˇ

ˇ

ˇ

ď b∆t sup
TmˆD

|∇g̃i|
N
ÿ

n“0

sup
rPr0,∆ts

´

|θtn`r ´ Ftn,tn`rpθtnq|
2

` |Itn`r ´ Itn |
2
¯1{2

ď ci5b∆t
N
ÿ

n“0

˜

sup
rPr0,∆ts

|θtn`r ´ Ftn,tn`rpθtnq| ` sup
rPr0,∆ts

|Itn`r ´ Itn |

¸

ď ci5b∆t
N
ÿ

n“0

sup
rPr0,∆ts

|θtn`r ´ Ftn,tn`rpθtnq| ` c6pbtq2pb1´q ` b2´2qq

where ci5 :“ supTmˆD |∇g̃i| and ci6 “ ci5 supTmˆD |KI |. This then implies:

Esup
sďt

ˇ

ˇAi
1

ˇ

ˇ

β1{β
ď c̃i5pN ` 1q1´1{βpbtqb1´qE

N
ÿ

n“0

sup
rPr0,∆ts

|θtn`r ´ Ftn,tn`rpθtnq|
β

1{β

` c̃i6pbtq2pb1´q ` b2´2qq

where c̃i5 :“ 21´1{βci5 and c̃i6 “ 21´1{βci6. Now:

|θtn`r ´ Ftn,tn`rpθtnq| ď

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“1

ż tn`r

tn

rωkpIsq ´ ωkpItnqsdBk
s

ˇ

ˇ

ˇ

ˇ

ˇ

` b

ˇ

ˇ

ˇ

ˇ

ż tn`r

tn

Kθpθs, Isqds

ˇ

ˇ

ˇ

ˇ

ď

m
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ż tn`r

tn

rωkpIsq ´ ωkpItnqsdBk
s

ˇ

ˇ

ˇ

ˇ

` b∆t sup
TmˆD

|Kθ|

From which we deduce:

E
N
ÿ

n“0

sup
rPr0,∆ts

|θtn`r ´ Ftn,tn`rpθtnq|
β

1{β

ď c8

m
ÿ

k“1

E
N
ÿ

n“0

sup
rPr0,∆ts

ˇ

ˇ

ˇ

ˇ

ż tn`r

tn

rωkpIsq ´ ωkpItnqsdBk
s

ˇ

ˇ

ˇ

ˇ

β1{β

` c7c8pN ` 1q1{βpbtqb1´q

where c7 :“ supTmˆD |KI |
β and c8 :“ pm` 1q1´1{β. We now apply the Burkholder-Davis-

Gundy inequality to find:

m
ÿ

k“1

E
N
ÿ

n“0

sup
rPr0,∆ts

ˇ

ˇ

ˇ

ˇ

ż tn`r

tn

rωkpIsq ´ ωkpItnqsdBk
s

ˇ

ˇ

ˇ

ˇ

β1{β

ď c9

m
ÿ

k“1

E
N
ÿ

n“0

ˆ
ż tn`1

tn

|ωkpIsq ´ ωkpItnq|
2ds

˙β{21{β
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ď c9

m
ÿ

k“1

E
N
ÿ

n“0

˜

∆t sup
D

|∇ωk|
2 sup
sPrtn,tn`1s

|Is ´ Itn |
2

¸β{21{β

ď c11

m
ÿ

k“1

E
N
ÿ

n“0

`

b2p∆tq3
˘β{2

1{β

ď c̃11pbtq3{2b1´3q{2pN ` 1q1{β

And so:

E sup
rPr0,∆ts

|θtn`r ´ Ftn,tn`rpθtnq|
β1{β

ď

”

c8c̃11pbtq3{2b1´3q{2 ` c10pbtqb1´q
ı

pN ` 1q1{β (8.21)

c9 is the constant from the BDG inequality and c10 “ c7c8. c11 :“ c9 supD |∇ωk| supTmˆD |KI |

and c̃11 “ mc11. Overall, then, we see:

Esup
sďt

ˇ

ˇAi
1

ˇ

ˇ

β1{β
ď c̃i5c̃11pN ` 1qpbtq5{2b2´5q{2 ` c̃i5c10pN ` 1qpbtq2b2´2q ` c̃i6pbtq2pb1´q ` b2´2qq

ď ci12pbtq5{2
´

b1´3q{2 ` b2´5q{2
¯

` ci13pbtq2
`

b1´q ` b2´2q
˘

` c̃i6pbtq2pb1´q ` b2´2qq

where c12 :“ c8c̃
i
5c̃11 and c13 :“ c̃i5c10. We can now put everything together to obtain:

Esup
sďt

ˇ

ˇ

ˇ
Hpysq ´ fpbps^ T bqq

ˇ

ˇ

ˇ

β1{β

ď c2e
bc1t

!

ĉ12pbtq5{2
´

b1´3q{2 ` b2´5q{2
¯

` ĉ13pbtq1{2
`

b1´q ` b2´2q
˘

` ˆ̃c6pbtq2pb1´q ` b2´2qq

`ĉ3pbtq1{2bq{2 ` ĉ4pbtq2pb1´q ` b2´2qq

)

where the hats on the constants denote that we have taken the supremum over i. If
we re-scale the time t Ñ t{b we find:

Esup
sďt

ˇ

ˇ

ˇ
Hpy s

b^T bq ´ fps^ bT bq

ˇ

ˇ

ˇ

β1{β

ď c2e
c1t
!

ĉ12t
5{2

´

b1´3q{2 ` b2´5q{2
¯

` ĉ13t
1{2

`

b1´q ` b2´2q
˘

` ˆ̃c6t
2pb1´q ` b2´2qq

`ĉ3t
1{2bq{2 ` ĉ4t

2pb1´q ` b2´2qq

)

The powers of b in the above are1 ´
3q
2 , 2 ´

5q
2 , 1 ´ q, 2 ´ 2q, and q

2 ; therefore the order
of convergence is maximized if we choose q “ 1{2. Then:

Esup
sďt

ˇ

ˇ

ˇ
Hpy s

b^T bq ´ fps^ bT bq

ˇ

ˇ

ˇ

β1{β

ď

”

b1{4
´

α1t
1{2 ` α2t

5{2
¯

` b1{2
´

α3t
1{2 ` α4t

2
¯

` b3{4α5t
5{2 ` b

´

α6t
1{2 ` α7t

2
¯ı

ec1t

for some constants αi. For b ă 1 we can write the above as:

Esup
sďt

ˇ

ˇ

ˇ
Hpy s

b^T bq ´ fps^ bT bq

ˇ

ˇ

ˇ

β1{β

ď b1{4
´

α̃1t
1{2 ` α̃2t

2 ` α̃3t
5{2

¯

ec1t (8.22)

for some constants α̃i. l
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8.6 Examples: not covered in class

8.6.1 Perturbation to Stochastic Integrable systems

Let H : R2d Ñ R, consider the Hamiltonian equation

9q “
BH

Bp
, 9p “ ´

BH

Bq
,

Write xt “ pqt, ptq and J “

˜

0 1

´1 0

¸

. The equation becomes

9xt “ J∇Hpxtq.

The energy H is a constant along the trajectory of the solution : Hpxtq “ Hpx0q.

Example 8.6.1 Take H “ 1
2p

2 ` 1
2ω

2q2. The general solution if of the form qptq “

A sinpωtq `B cospωtq. Consider

pqptq, pptqq “ Apsinpωtq, cospωtqq.

The level sets are ellipsoids.

Example 8.6.2 Let H : R2 Ñ R, and p∇HqK is the skew gradient of H. Consider

dxϵt “ p∇HqKpxϵtq ˝ dBt ` ϵV pxtqdt.

In pH, θq, the action angle coordinates, It reduces to a system of equations where
H P Rn is the slow variable and θ P Sn is the fast variables.

d

dt
Ht “ ϵfpHϵ

t , θ
ϵ
tq,

dθt “XpHϵ
t , θ

ϵ
tq ˝ dWt ` ϵX0pHϵ

t , θ
ϵ
tqdt.

Change time t ÞÑ t{ϵ:

d

dt
H̃ϵ

t “ fpH̃ϵ
t , θ̃

ϵ
tq,

dθ̃t “
1

?
ϵ
XpH̃ϵ

t , θ̃
ϵ
tq ˝ dW̃t `X0pH̃ϵ

t , θ̃
ϵ
tqdt.

The Poisson bracket of two functions f and g is denoted by tf, gu, it is given by the
formula:

tf, gu “ x∇f, J∇gq “

d
ÿ

i“1

ˆ

Bf

Bqi

Bg

Bpi
´

Bf

Bpi

Bf

Bqi

˙

.
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A Hamiltonian system in dimension 2d is said to be Liouville integrable if it has
independent conserved quantities Hi, which are in involution, i.e. tHi, Hju “ 0.

Louville’s theorem : Any integrable system on R2d is solvable by quadratures, i.e.
the solution can be expressed explicitly by integrals. Furthermore, if the level set
tHi “ ciu is compact and connected, it is diffeomorphic to the d-dimensional torus
torus Td.

Suppose we have tHiu
n
i“1 in evolution, an interesting model is:

dxϵt “

n
ÿ

i“1

Hipx
ϵ
tqdW

i
t ` ϵV pxϵtqdt.

In Darboux coordinates we have:

dθi,ϵt “
1

?
ε

m
ÿ

k“1

ωi
kpIεt qdW k

t `Ki
θpθεt , Itqdt

dIϵ,it “ Ki
Ipθϵt , I

ε
t qdt

8.6.2 Scaling of Riemannian metrics

SUp2q which can be identified with the sphere S3. The Lie algebra of SUp2q is given by
the Pauli matrices

X1 “

˜

i 0

0 ´i

¸

, X2 “

˜

0 1

´1 0

¸

, X3 “

˜

0 i

i 0

¸

.

By declaring t 1?
ϵ
X1, X2, X3u an orthonormal frame we define Berger’s metrics gϵ.

Thus pS3, gϵq converges to S2. Consider

Lϵ :“
1

ϵ
pX1q2 ` Y0,

equivalent the SDE on the Lie group:

dgt “
1

?
ϵ
X˚

1 pgtq ˝ dBt ` Y ˚
0 pgtqdt,

There is the Hopf fibration π : SUp2q Ñ S2p12q. Using this structure, we obtain uϵt such
that uϵt and gϵt are both on SUp2q and have the same projection on S3{S1:

9uϵt “ pAdpht{ϵqY0q˚puϵtq

dht “ X˚
1 phtq ˝ dBt.
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Let us denote by ∆ϵ
S3 and ∆S1 the Laplacians on pS3,mϵq and on S1 respectively, and

also denote by ∆h the horizontal Laplacian identified with the Laplacian on S2p12q “

S3{S1.

dgt “
1

?
ϵ
X1pgtq ˝ db1t `X2pgtq ˝ db2t `X3pgtq ˝ db3t . (8.23)

These operators commute and ∆ϵ
S3 “ 1

ϵ∆S1 `∆h. If tX1, X2, X3u are the Pauli matrices,
identified with left invariant vector fields, then ∆S1 “ pX1q2, ∆h “ pX2q2 ` pX3q2. As
ϵ approaches 0, any eigenvalues of the Laplacian ∆ϵ

S3 coming from a non-zero eigen-
value of 1

ϵ∆S1 is pushed to the back of the spectrum and an eigenfunction of ∆ϵ
S3, not

constant in the fibre, flies away. In other words the spectrums of S3 converge to that
of S2. Cheeger, M. Gromov, Tanno-79, L. Bérard-Bergery and J. -P. Bourghignon, H.
Urakawa]Urakawa86.

8.6.3 Geodesics

The geodesic equation on the orthonormal frame bundle solves

9ut “ Heiputq

Then the projection of ut is a geodesic with speed u0e. The solution to

dut “

n
ÿ

i“1

Heiputq ˝ dW i
t

projects to a Brownian motion. We consider

dut “

n
ÿ

i“1

Heiputq ˝ dW i
t ` ϵV putqdt.



Chapter 9

Appendix

9.1 Metric Spaces

A metric space is a space equipped with a distance function d. A metric is a function
d : X ˆX Ñ R such that the following holds for any points x, y, z P X : (i) dpx, yq “ dpy, xq,
(ii) dpx, yq “ 0 if and only if x “ y, (iii) dpx, yq ď dpx, zq ` dpyz, q.

A sequence of points tanu in a metric space is called a Cauchy sequence if

lim
mÑ8

dpan, an`mq Ñ 0.

A metric space X is complete if every Cauchy sequence has a limit in X . A metric
space is separable if there exists a countable dense subset tanu, meaning that every
open ball Bx0prq :“ tx P X : dpx, x0q ă ru contains at least one point from tanu.

A set in the metric space is open if whenever it contains a point x, there exists r ą 0

such that it contains Bxprq. A set U is said to be closed if its complement X zU , in X ,
is an open set. Open balls Bx0prq are open and closed balls B̄x0prq : tx P X : dpx, x0q ď ru

are closed sets.

Examples of metric space include the Euclidean spaces with dpx, yq “ |x ´ y| is
complete separable metric spaces. Any finite dimensional complete Riemannian man-
ifolds, with the Riemannian metric, are complete separable metric spaces. For clarity,
in the definition of manifolds, we assume the properties of Hausdorff and second
countability. A subset of the metric space with the same metric is a metric space.

Any set X is a metric space when endowed with the discrete metric: dpx, yq “ 1 for
any x ­“ y and dpx, xq “ 0 for any point x, y.

Definition 9.1.1 • A metric space is said to be sequentially compact if every

171
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sequence of points in the space has a convergent subsequence.

• It is said to be totally bounded (or pre-compact) if, for every number ϵ ą 0, the
space can be covered by a finite family of open balls of radius ϵ.

Every totally bounded set is separable, in particular every compact metric space is
separable.

On a metric space, the following notions of compactness agree:

Proposition 9.1.2 Let K be a subset of a metric space X . The following statements
are equivalent:

• Every open covering of K has a finite sub-covering.

• K is complete and totally bounded.

• Any infinite sequence of distinct points in K has a limit point in K.

In other words, sequential compactness is equivalent to the space being totally bounded
and complete.

If A is a set, define the distance function to A by: dpx,Aq “ infyPA dpx, yq.

Lemma 9.1.3 Let A Ă X . Then for any x, z P A,

|dpx,Aq ´ pz,Aq| ď dpx, zq.

Proof For any x, y, z P X , the triangle inequality gives dpx, yq ď dpx, zq ` dpz, yq. Taking
the infimum over y P A, we obtain: dpx,Aq ď dpx, zq`dpz,Aq. This gives dpx,Aq´dpz,Aq ď

dpx, zq. The required inequality follows from the symmetry of d. l In fact dpx,Aq “ 0 if

and only if x belongs to the closure of A.

Definition 9.1.4 A space is said to be a Hausdorff space if the following hold:

• (1) [T1, Fréchet] or ay x ­“ y there exist disjoint open sets U and V such that x P U

and y P V .

• (2) [T4, normal] For any disjoint closed sets C1 and C2 there are disjoint open sets
U and V such that C1 Ă U and C2 Ă V .

For a general topological space, T4 does not necessarily implies T4/ Tkae the ex-
ample X “ t0, 1u with the topology consists of two open sets ϕ,X . The only closed sets
are ϕ and X , and one can take the open sets ϕ Ă ϕ and X Ă X . But there are no open
sets that distinguish the two points.
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Proposition 9.1.5 A metric space is a Hausdorff space.

Proof Any singleton sets is closed, so T4 implies T1. Let A,B be disjoint closed sets.
Since distance function to a set is continuous, tx : dpx,Aq ă dpx,Bqu and tx : dpx,Aq ą

dpx,Bqu are open sets, and

A Ă tx : dpx,Aq ă dpx,Bqu, B Ă tx : dpx,Aq ą dpx,Bqu.

l

Metric space has a other nice property: If A and B are closed,

fpxq “
dpx,Aq

dpx,Aq ` dpx,Bq

is a continuous function with the property that f |A “ 0 and f |B “ 0.

Theorem 9.1.6 (Urysohn’s lemma) For any closed and disjoint subsets A and B of X
there exists a continuous function f : X Ñ r0, 1s such that f “ 0 on A and f “ 1 on B.

The following is taken from Theorem 4.34 [4, pp132].

Theorem 9.1.7 (Tietze Extension Theorem) Suppose that X is a locally compact Haus-
dorff space and K is a compact subset of X . If f is a real-valued continuous function on
K, then there exists a continuous function F on X such that F “ f on K and F can be
taken to vanish outside of a compact set.

As usual, BpX q denotes the Borel σ-algebra on X . It is the smallest collection
of subsets of X that contains all open sets and closed under countable unions and
countable intersections.

Definition 9.1.8 Let X be a metric space. A measure on pX ,BpX qq is called a Borel
measure.

Theorem 9.1.9 [14, Thm. 1.7, pp.4] The Borel σ-algebra on a metric space X is the
smallest σ-algebra with respect to which all bounded, continuous, real valued functions
on X are measurable.

9.1.1 Algebra of functions

An algebra A (over the real number field) is a real vector space with a binary operation
AˆA Ñ A, which we denote by px, yq ÞÑ xy, satisfying the following bilinear iproperties:

px` yqz “ xz ` yz
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zpx` yq “ zx` zy

pazqpbyq “ pabqpxyq

for all x, y, z P A and a, b P R.

If X is a metric space, the space CbpX q, of bounded continuous real-valued func-
tions on X is an algebra with the usual pointwise multiplication as its binary oper-
ation. The spaces CKpX q ((the space of continuous functions with compact support)
) and C0pX q (the space of continuous functions vanishing at infinity) are subspace of
CbpX q, and are also algebras.

For a manifold X , the sub-spaces of Ck or C8 functions within the above mentioned
spaces, such as Ck

0pX q and C8
KpX q, are also algebras.

If X “ Rn, the space of polynomials forms an algebra, while the space of linear
functions does not.

9.2 Measures

By a measure we mean a σ-finite measure: X “ Yn
i“1Ui where Ui are measurable sets

of finite measure. On the metric space in the context of this note, we assume, in
addition, that each ball has finite measure.

Proposition 9.2.1 Let µ be a probability measure on separable metric space, there
exists a unique closed set C such that µpCq “ 1 and if D is a closed set with µpDq “ 1

it is necessary that C Ă D. Moreover C is the collection of all points x P X with the
property that any open set containing x has positive measure.

Definition 9.2.2 The closed set C in the above proposition is called the support or
the spectrum of the measure µ.

Definition 9.2.3 A measure on a metric space is regular if the measure of any mea-
surable set is determined by the values of the measures on open sets or on closed
sets:

µpAq “ suptµpCq : C Ă A,C is closed u

µpAq “ inftµpCq : C Ą A,U is openu.

Definition 9.2.4 A measure µ is tight if for any ϵ ą 0 there exists a compact set K Ă X
such that µpX zKq ă ϵ.



9.2. MEASURES 175

Lemma 9.2.5 If X is a complete separable metric space, and µ a probability measure.
Then for every ε ą 0 there exists a compact set K Ă X such that µpKq ě 1 ´ ε.

Proof Let triu be a countable dense subset of X and denote by Bpx, rq the ball of
radius r centred at x. Note that since trku is a dense set, one has

Ť

ką0 Bprk, 1{nq “ X
for every n. Fix ε ą 0 and, for every integer n ą 0, denote by Nn the smallest integer
such that

µ
´

ď

kďNn

Bprk,
1

n
q

¯

ě 1 ´
ε

2n
.

Since
Ť

ką0 Bprk, 1{nq “ X , the number Nn is finite for every n. Define now the set K
as

K “
č

ně0

ď

kďNn

Bprk,
1

n
q .

It is clear that µpKq ą 1 ´ ε. Furthermore, K is totally bounded, i.e. for every δ ą 0 it
can be covered by a finite number of balls of radius δ (since it can be covered by Nn

balls of radius 1{n). It is a classical result from topology that in complete separable
metric spaces, totally bounded sets have compact closure. l

Definition 9.2.6 (Functions of positive type) A function f : V Ñ C where V is a
vector space is of positive type if for any n vectors λ1, . . . , λn in V , the matrix A, with
Ai,j “ fpλi ´ λjq, is a positive semi-definite matrix and f is continuous on each finite
dimensional subspace of V . Thus

1. fpλi ´ λjq “ fpλj ´ λiq,

2.
řn

i,j“1 fpλi ´ λjqξiξj ě 0 for any ξ1, . . . , ξn in C.

Lemma 9.2.7 If f is of positive type, then

(1) fp0q ě 0,

(2) fp´xq “ fpxq, any x P C,

(3) |fpxq| ď fp0q for all x, so f is bounded.

Proof Take N “ 1 to get (1). Take N “ 2, λ1 “ 0 and λ2 “ ´x to get (2) and
˜

fp0q fpxq

fp´xq fp0q

¸

is positive semi-definite. So fp0q2 ´ fpxqfpxq ě 0, giving part 3. l
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9.3 Measure determining sets

Theorem 9.3.1 Suppose that pΩ,Fq is a measurable space, and C is a π-system gen-
erating F . Let µ and ν be two measures which agree on C.

1. If µpΩq “ νpΩq ă 8, then µ “ ν

2. More generally, if there exists an increasing sequence of subsets Ωk P C, such that
Ω “ Ykě1Ωk and µpΩkq “ νpΩkq ă 8 for all k ě 1, then µ “ ν.

Proof (1) First assume that µpΩq “ νpΩq ă 8. Let

G “ tA P F : µpAq “ νpAqu.

Then Ω P G by assumption. Moreover, if An is a non-decreasing sequence of measur-
able sets in G,

µp

8
ď

n“1

Anq “ lim
nÑ8

µpAnq “ lim
nÑ8

νpAnq “ νp

8
ď

n“1

Anq

Thus, G is closed under taking lower limit. Let A Ă B, A,B P G, then by additive
property,

µpBzAq “ µpBq ´ µpAq “ νpBq ´ νpAq “ νpBzAq.

This means BzA P G, and therefore G is a λ-system containing a π-system generating
F . By the π ´ λ-Theorem, G Ą F and µ “ ν on F , which proves the first point.

(2) For the second point, let Fk “ tA X Ωk : A P Fu denote the trace σ-algebras on
Ωk, and denote by µk and νk the restrictions to Ωk of the measures µ and ν:

@A P F , µkpAq “ µpAX Ωkq, νkpAq “ νpAX Ωkq.

Applying the first point to µk and νk, we deduce that µk “ νk. Therefore, by lower
contiunity of measures, we obtain, for all A P F ,

µpAq “ lim
kÑ8

µpAX Ωkq “ lim
kÑ8

νpAX Ωkq “ νpAq,

completing the proof. l

Example 9.3.2 Let Ω “ t1, 2, 3, 4u. Let G “ tt1, 2u, t1, 3u, t3, 4uu, which generates the
discrete σ-algebra F ( the power set), but not a π-system. The measure µ and ν agree
on G, not on F .

µp1q “ 1{6, µp2q “ 2{6, µp3q “ 1{6, µp4q “ 2{6,

νp1q “ 2{6, νp2q “ 1{6, νp3q “ 0, νp4q “ 3{6.
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9.4 Push forward measure

Let pX ,Aq and pY,Bq be two measurable spaces. Let µ be a measure on X , and let
f : X Ñ Y be a measurable function. We denote by f˚µ the push forward measure
under f , on pY,Bq, defined as

pf˚µqpBq “ µpf´1pBqq,

for all B P B, where f´1pBq :“ tx : fpxq P Bu is the pre-image of B under f . In other
words, the measure of B is assigned to be the measure of its pre-image.

Proposition 9.4.1 Let pY,Bq be a measurable space, and let φ : Y Ñ R a measurable
function. Then, we have

ż

X
φ ˝ f dµ “

ż

Y
φ dpf˚µq.

This is understood in the sense that φ is integrable with respect to f˚µ if and only if φ˝f

is integrable with respect to µ.

Proof This result holds for indicator functions of measurable sets by the definition
of the push forward measure. Applying the monotone convergence theorem on both
sides shows that the set of functions with the desired property forms a monotone
class. Finally apply the monotone class theorem to conclude the assertion. l

Definition 9.4.2 If f : X Ñ X is a measurable map, we say that µ is invariant under
f if f˚pµq “ µ.

We define the direct measure at x P X as

δxpAq “

#

1, if x P A

0, if x R A,

for measurable sets A Ă X .

Example 9.4.3 For any transformation T : Rn Ñ Rn, we have T˚pδxq “ δTx. The
δ-measure is not invariant under rotations (unless x “ 0), nor under translations.

Remark 9.4.4 Given a measure ν on Y, there is no universally sensible way to con-
struct a measure on X from ν and a measurable map f : X Ñ Y in general. However,
if f : R Ñ R is injective, we can define the pullback measure, denoted by f˚ν, as the
measure pf´1q˚ν. In other words, f˚νpAq “ pf´1q˚νpAq “ νpfpAqq for measurable sets
A Ă X .
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On the other hand, consider the case where Y “ r0, 1s, dx is the Lebesgue measure,
and f : t1, 2u Ñ r0, 1s is defined by fp1q “ 0 and fp2q “ 0. In this situation, there is no
measure on t1, 2u whose push forward measure is dx. Therefore, there is no suitable
measure µ on X such that f˚pµq “ ν.

9.4.1 Distributions of random variables

Let pΩ,F ,Pq be a probability measure. Let pS,Gq be a measurable space. A measurable
function X : Ω Ñ S is called a random variable, and S is called its state space.
The distribution of X is the push forward measure X˚pPq on its state space X , where
X˚pPqpAq “ PpX´1pAqq. The distribution of a random variable encodes its statistical
information.

If φ : S Ñ R and X : Ω Ñ S are measurable maps, then

ErφpXqs :“

ż

Ω
φ ˝X dP “

ż

S
φ dpX˚Pq.

Proposition 9.4.5 Let Y be a real-valued, non-negative random variable on pΩ,Fq.
Then, Y “ 0 almost surely if

ş

A Y “ 0 for every measurable set A P F . Consequently, two
real valued, integrable random variables Y and Y 1 are equal almost surely if

ş

A Y “
ş

A Y
1

for every measurable set A.

Proof Suppose that tY ­“ 0u ą 0. Since tY ą 0u “ tY ­“ 0u and has positive measure,
there must exist some a ą 0 such that the set tY ą au has positive measure (otherwise,
PpY ą 0q “ limnÑ8 PpY ą 1

nq “ 0q, But, then
ż

tY ą0u

Y dP ě aPpY ą aq ą 0,

which contradicts the assumption that
ş

A Y “ 0 for any measurable set A. Hence
µptY ­“ 0uq “ 0 ,completing the proof.

For the second statement, let A “ tY ą Y 1u. Applying the first result to pY ´ Y 1q1A,
we conclude that Y “ Y 1 on A.By symmetry, this concludes the proof. l

9.5 Conditional Expectations

9.5.1 Absolute continuity of measures

Let P and Q be two measures on a measure space pΩ,Fq.
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Definition 9.5.1 1. We say that Q is absolutely continuous with respect to P if
QpAq “ 0 for all A P F such that P pAq “ 0. This is denoted as Q ! P .

2. The measures P andQ are said to be equivalent, denoted by Q „ P , if they are
absolutely continuous with respect to the other.

3. The two measures P and Q are said to be singular if P pAq “ 0 whenever QpAq ­“ 0,
and QpAq “ 0 whenever P pAq ­“ 0.

Example 9.5.2 Let Ω “ r0, 1q and An
i “ r i

2n ,
i`1
2n q for each n P N, and i “ 0, 1, . . . , 2n ´ 1.

Let Fn denote the σ-algebra generated by the sets An
0 , A

n
1 , . . . , A

n
2n´1. Let dx denote

the Lebesgue measure, restricted to Fn, and let µ be a measure on pΩ,Fnq such that
µ ! dx. Then,

dµ

dx
pxq “

ÿ

i

µpAn
i q

LebpAn
i q

1An
i

pxq, x P r0, 1q,

where 1An
i

in the indicator function of An
i .

Example 9.5.3 Let Ω “ r0, 1s and let P denote the Lebesgue measure. Define the
measure Q1 by

dQ1

dP
“ 21r0, 1

2
s.

Then Q1 ! P , but P is not absolutely continuous with respect to Q1. Now define Q2

by dQ2

dP “ 21r 1
2
,1s. The two measures Q1 and Q2 are singular.

Theorem 9.5.4 (Radon-Nikodym Theorem) IfQ ! P , there exists a nonnegative mea-
surable function Ω Ñ R, which we denote by dQ

dP , such that for each measurable set A
we have

QpAq “

ż

A

dQ

dP
pωqdP pωq.

The function dQ
dP : Ω Ñ R is called the Radon-Nikodym derivative of Q with respect to P .

We also refer to dQ
dP as the density of Q with respect to P . This function is unique.

Note that if Q is a finite measure, then dQ
dP P L1pΩ,F , P q. If P is a probability

measure and
ż

Ω

dQ

dP
pωq dP pωq “ 1,

then Q is also a probability measure.

Furthermore, if dQ
dP ą 0, then

P pAq “

ż

A
dP “

ż

A

1
dQ
dP

dQ

dP
dP “

ż

A

1
dQ
dP

dQ.
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It follows that if QpAq “ 0 then P pAq “ 0. Hence, the two measures are equivalent, and

dP

dQ
¨
dQ

dP
“ 1.

9.5.2 Conditional expectations

Definition 9.5.5 Let X P L1pΩ,F , P q be a r.v.. Let G be a sub-σ-algebra of F . A
conditional expectation of X given G is any G-measurable integrable random variable
Y such that

ż

A
XdP “

ż

A
Y dP, @A P G (9.1)

Theorem 9.5.6 Let X P L1pΩ,F , P q.

(1) If Y1, Y2 P L1pΩ,G, P q are conditional expectations of X then Y1 “ Y2 a.s.

(2) If a, b P R, X1, X2 P L1pΩ,F , P q then EpaX1 ` bX2|Gq “ aEpX1|Gq ` bEpX2|Gq.

(3) The conditional expectation of X given G exists.

(4) If X ě 0, EpX|Gq ě 0.

We denote by EpX|Gq or EtX|Gu any version of the conditional expectation of X given G.

Proof (1) We first prove uniqueness. Let Y1, Y2 be variables such that for any A P G,
ż

A
pY1 ´ Y2qdP “ 0.

This implies that Y1 “ Y2 a.s.

(2) The linearity follows from uniqueness.

(3) and (4). Assume that X ě 0. Define QpAq “
ş

AXpωqdP pωq for A P G. Then Q is
a measure. The measure P restricts to a measure on G. If P pAq “ 0 then QpAq “ 0.
By the Radon-Nikodym theorem, there exists a non-negative random variable dQ

dP , that
belongs to L1pΩ,G, P q, such that

QpAq “

ż

A
XpωqdP pωq “

ż

A

dQ

dP
dP.

Thus dQ
dP satisfies (9.1) and is the conditional expectation of X given G.

This proves (4).
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Let X P L1. Then X “ X` ´X´ where X`, X´ are positive functions in L1. By part
(2) they have conditional expectations. We define

EtX|Gu “ EtX`|Gu ´ EtX´|Gu.

(The conditional expectation can also be obtained directly by Radon-Nikodym theorem
for signed measures). This proves (3).

l

Proposition 9.5.7 For all bounded G-measurable functions g,
ż

Ω
gpωqXpωqdP pωq “

ż

Ω
gpωqEtX|Gupωq dP pωq. (9.2)

9.5.3 Properties of Conditional Expectations

Proposition 9.5.8 Let X,Y P L1pΩ,F , P q and G a sub-σ-algebra of F .

1. Positivity Preserving. If X ď Y , then EpX|Gq ď EpY |Gq.

2. Linearity. For all a, b P R,

EpaX ` bY |Gq “ aEpX|Gq ` bEpY |Gq.

3. |EpX|Gq| ď Ep|X| |Gq.

4. If X is G-measurable, EpX|Gq “ X.

5. If σpXq is independent of G, EpX|Gq “ EX a.s.

6. Taking out what is known: If X is G measurable, XY P L1 then

EpXY |Gq “ XEpY |Gq.

7. EpEpX|Gq q “ EX.

8. Tower property: If G1 is a sub σ-algebra of G2 then

EpX|G1q “ EpEpX|G1q|G2q “ EpEpX|G2q|G1q.

9. Conditional Jensen’s Inequality. Let φ : Rd Ñ R be a convex function. Then

φpEpX|Gqq ď EpφpXq|Gq.

For p ě 1, }EpX|Gq}Lp ď }X}Lp .
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10. Conditional dominated convergence Theorem. If |Xn| ď g P L1 then

EpXn|Gq Ñ EpX|Gq.

11. L1 convergence. If Xn Ñ X in L1 then EpXn|Gq Ñ EpX|Gq in L1.

12. Monotone Convergence Theorem. If Xn ě 0 and Xn increases with n then EpXn|Gq

increases to EplimnÑ8 Xn|Gq.

13. Fatou’s Lemma. If Xn ě 0,

Eplim inf
nÑ8

Xn|Gq ď lim inf
nÑ8

EpXn|Gq.

14. Suppose that σpXq _ G is independent of A, then EpX|A _ Gq “ EpX|Gq.

Proposition 9.5.9 Let h : E ˆ E Ñ R be an integrable function on a metric space E.
Let X,Y be random variables with state space E such that hpX,Y q P L1. Let Hpyq “

EphpX, yqq. Then
EphpX,Y q|σpY qq “ HpY q.

Proposition 9.5.10 Let X : Ω Ñ X and Y : Ω Ñ Y be random variables with X measur-
able with respect to G Ă F and Y is independent of G. If φ : X ˆ Y Ñ R is a measurable
function such that φpX,Y q is integrable, then

EpφpX,Y q|Gqpωq “ EpφpXpωq, Y q, a.s.

9.5.4 Disintegration and Orthogonal Projection

Let G be a sub-σ-algebra of a σ-algebra F . Since L2pΩ,F , P q is a Hilbert space and
L2pΩ,G, P q is a closed subspace of L2, let π denote the orthogonal projection defined
by the projection theorem ( §II.2 Functional Analysis [15]),

π : L2pΩ,F , P q Ñ L2pΩ,G, P q.

f ´ πpfq K L2pΩ,G, P q

πf P L2pΩ,G, P q

f
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We will see below that the conditional expectation of an L2 function is precisely its
L2 orthogonal projection to L2pΩ,G, P q. We give below second proof for the existence
of conditional expectations.

Proof (1) Let X P L2pΩ,F , P q. Then for any h P L2pΩ,G, P q,

xX ´ πX, hyL2pΩ,F ,P q “ 0.

This is,
ż

Ω
XhdP “

ż

Ω
πpXqhdP

Let A P G and take h “ 1A to see that

πX “ EtX|Gu.

(2) Let X P L1 with X ě 0. Let 0 ď X1 ď X2 ď . . . be a sequence of bounded positive
functions (increasing with n) converging to X pointwise. Then Xn P L2, tπXnu exists,
and are positive. Furthermore for any A P G,

ż

A
XndP “

ż

A
πXndP

Since,
0 ď 1AX1 ď 1AX2 ď . . . ,

limnÑ8 πXn exists. By the monotone convergence theorem,
ż

A
XdP “ lim

nÑ8

ż

A
XndP “ lim

nÑ8

ż

A
πXndP “

ż

A
lim
nÑ8

πXndP.

(3) Finally for X P L1 not necessarily positive, let X “ X` ´X´ and define EtX|Gu “

EtX`|Gu ´ EtX´|Gu.

l

Remark 9.5.11 Let X P L2pΩ,F , P q. Then πX is the unique element of L2pΩ,G, P q

such that
E|X ´ πX|2 “ min

Y PL2pΩ,G,P q
E|X ´ Y |2.

9.5.5 Note on filtering

At this point we note a simple problem from Filtering Theory. Let Yt be the observation
process of a signal process. What is the best estimation for Xt given tYs, s ď tu? We
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have seen that in the L2 case, the conditional expectation is an L2 minimizer. We
therefore define the L2 estimator to be:

X̂t :“ EtXt|σtYs : 0 ď s ď tuu.

The concern in filtering is to find the conditional distribution, and the conditional
density when it exists, of Xptq given Y ptq.

In linear filtering, we assume that

Xtpωq “ X0pωq `Wtpωq `

ż t

0
F psqXspωqds`

ż t

0
fpsqds

Ytpωq “

ż t

0
HpsqXsds`

ż t

0
hpsqds`Btpωq.

Here tpWtq, pBtqu are independent Brownian motions and both independent of X0. We
assume that F, f,H, h : R` Ñ R are bounded measurable functions. This leads to
Karman Filter, linear filtering and Zakai equation.

9.6 Uniform Integrability

Let pΩ,F , µq be a (σ-finite) measure space, and I an index set.

Definition 9.6.1 A family of real-valued measurable functions pfα, α P Iq is uniformly
integrable (u.i.) if

lim
CÑ8

sup
αPI

ż

t|fα|ěCu

|fα|dµ “ 0.

Lemma 9.6.2 (Uniform Integrability of Conditional Expectations) Let X : Ω Ñ R
be in L1. Then the family of functions

tEtX|Gu : G is a sub σ-algebra of Fu

is uniformly integrable.

Proof exercise. l

Theorem 9.6.3 (Vitali Theorem) Let fn P Lppµq, p P r1,8s. Then the following is equiva-
lent.

1. fn
Lp

Ñ f , i.e. limnÑ8 }fn ´ f}p “ 0.

2. t|fn|pu is uniformly integrable and fn Ñ f in measure.

3.
ş

|fn|pdµ Ñ
ş

|f |pdµ and fn Ñ f in measure.
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9.7 Uniformly absolute continuity

Let pS,A, µq be a measure space. Let f, fα : S Ñ R be Borel measurable functions.

Proposition 9.7.1 If f P L1pµq where µ is a σ-finite measure, for every ϵ ą 0 there is
δ ą 0 such that for all A with µpAq ă δ,

ż

A
|f |dµ ă ϵ.

Proof We define a measure νpAq “
ş

A fdµ. It is a signed measure with both the positive
and negative part absolutely continuous w.r.t. µ. By considering ν`, ν´ separately, we
may and will assume that f ě 0 and ν is a positive measure. If the conclusion does
not hold, there exists a positive number ϵ such that for each n there is a set An with
µpAnq ă 1

2n and

νpAnq “

ż

An

|f |dµ ě ϵ.

Let A “ X8
n“1 Y8

k“n Ak. Then,

µpAq “ µpX8
n“1 Y8

k“n Akq “ lim
nÑ8

µpY8
k“nAkq “ 0.

In particular
ş

A fdµ “ 0. But,

νpAq “ lim
nÑ8

νpY8
k“nAkq ě νpAnq ě ϵ.

This gives a contradiction. l

Definition 9.7.2 A family of integrable real valued random functions tfαu is uni-
formly absolutely continuous if for every ϵ ą 0 there is a number δ ą 0 such that
if a measurable set A has µpAq ă δ then for all α P I

ż

A
|fα|dµ ă ϵ.

Proposition 9.7.3 Let µ be a finite measure. Let pfα, α P Iq be a family of integrable
real valued functions. The following statements are equivalent:

(1) pfα, α P Iq is uniformly integrable (u.i.)

(2) pfα, α P Iq is L1 bounded and uniformly absolutely continuous.

(3) (de la Vallee-Poussin criterion) There exists an increasing convex function Φ : R` Ñ

R` such that limxÑ8
Φpxq

x “ 8 and supα EpΦp|fα|qq ă 8.
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Proposition 9.7.4 Let pS,A, µq be a measure space. Suppose that fn : S Ñ R belongs
to L1.

1. If fn Ñ f in L1 then tfnu is L1 bounded.

2. If fn Ñ f in L1, then tfnu is uniformly absolutely continuous. See exercise 11,
section 3.2 in [4].

3. Suppose that µ is a finite measure. If fn Ñ f in measure and tfnu is uniformly
absolutely continuous then fn Ñ f in L1.

Proof By Riesz-Fisher theorem, the L1 space is a complete Banach space. (1) is
obvious.

(2)Suppose that fn Ñ f in L1. For any ϵ ą 0 there is Npϵq such that

sup
něN

ż

|fn ´ f |dµ ă ϵ{2.

Let α ą 0 be such that if µpAq ă α then
ż

A
|f |dµ ă ϵ{2, sup

kďN´1

ż

A
|fk|dµ ă ϵ.

For n ě N ,
ż

A
|fn|dµ ď

ż

|fn ´ f |dµ`

ż

A
|f |dµ ă ϵ.

(3) We may assume that µ “ P is a probability measure.

Suppose that tfnu is uniformly absolutely continuous and fn Ñ f in measure, i.e.
for any ϵ ą 0,

lim
nÑ8

P p|fn ´ f | ą
ϵ

3
q “ 0.

Let ϵ ą 0. Choose δpϵq ą 0, such that if E is a measurable set with µpEq ă δ,

sup
n

ż

E
|fn|dP ă ϵ{3,

ż

E
|f |dP ă ϵ{3.

There exists Npϵ, δq such that for P p|fn ´ f | ą ϵ{3q ă δ whenever n ě Npδ, ϵq. For such
n,

ż

|fn ´ f |dP ď

ż

|fn´f |ď ϵ
3

|fn ´ f |dP `

ż

|fn´f |ą ϵ
3

|fn|dP `

ż

|fn´f |ą ϵ
3

|f |dP ă ϵ.

It follows that fn Ñ f in L1.

l
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